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Cavitation versus Vortex Nucleation in a Superfluid Model

C. Josserand? Y. Pomealt, and S. Rich
'INLN, UMR 129 Centre National de la Recherche Scientifique-Université de Nice-Sophia Antipolis, 1361 Route des Lucioles,
06560 Valbonne, France
’LPS, URA 1306 Centre National de la Recherche Scientifique, Ecole Normale Supérieure, 24 rue Lhomond,

75231 Paris Cedex 05, France
(Received 17 April 1995

We consider a “subcritical” nonlinear Schrodinger equation as a simple model of a biphase (vapor/
liquid) superfluid helium. Both cavitation and vortex nucleation might occur in such a liquid whenever
the local velocity exceeds certain critical values. In our model, the critical velocity for cavitation is
smaller than the one for the appearance of vortices. However, cavitation mediates vortex nucleation by
a self-sustained mechanism. This effect dramatically decreases the critical speed for dissipation.

PACS numbers: 67.40.Bz

It is shown in Ref. [1] that when the Landau criti- physics of this model depends on the dimensionless ra-
cal speed for phonons is exceeded vortices are creatdid g = p./po; Wherepy = |¢|? is the uniform solution
in a model of superfluidity at OK, that is, the nonlin- representing the density of the liquid phase. Roughly,
ear Schrodinger (NLS) or Gross-Pitaevsiquation [2]. is a fraction of a packing density, so thaj can be con-
This model bears many fundamental properties of real swsidered as an adjustable parameter related to the pressure.
perfluid Hell, such as the existence of sound waves and It is useful to employ the hydrodynamical variables
quantization of circulation. However, the NLS equationp = |#|> and v = V¢, with ¢ being the phase of.
may differ slightly from real Ha. One such difference is Consequently Eq. (1) can be rewritten as
the lack of a roton minimum in the excitation spectrum

difference that can be restored by a convenient change ofd:p = -V - (p0); (2)
the nonlinear part [3]. Another discrepancy is related to .

basic thermodynamics: The equation of states deduced, , — Alp'?) — L Vo) — p2 + 2 '
from the NLS equation always yields a single (superfluid) o 2p'/2 (p™5) 2 (V4) P pep
phase, although this phase exists in nature only with a (3)

certain nonzero density and can be in equilibrium with a ) ) ) )
vapor phase (at 0K this vapor could also be in a cohererfgdquation (,2), is for mass conservation, “and Eq. 3) is
guantum state, a kind of “supergas,” which has never beefi Be;rnoulll-llke E:I%Jatlonl,/2whenever the “quantum pres-
observed, either in helium or other elements). The possfUre” term(1/2p ")A(p'/%) can be neglected, as, for
bility of two phase equilibria (liquid/ivapor) is important €X@mple, for slowly varying perturbations. The equilib-
because of the following remarks: Vortices are emitted i/ UM hydrostatic pressure is related goby the equation
a superflow as the velocity exceeds a certain value, but tHf state P = pl[5 (p/pc)* = (p/pc)*] and the sound
high speed regions correspond to a low hydrostatic pregpeed isc = \JaP/dp = V2 p~/(p/pc)> = p/pe; thus
sure area due to the Bernoulli effect. In classical fluidsdP/dp < 0 for p < p.. In order to have an idea of
this low pressure may be sufficient to trigger the forma-now realistic this can be, we pletvs P, which concurs
tion of bubbles via the (dynamical) cavitation process. —qualitatively with the data for liquid He [6] (see Fig. 1).
Below we present a model in which cavitation takesIn our model, the sound speed vanishes near the critical
place, and it occurs that within the modeling constraintg0int (P.) asc ~ (P — P.)!'/* although experimentally it
cavitation develops at speeds lower than that required fg¥eems that vanishes as ~ (P — P.)'/3. One can rem-
vortex nucleation. This in turn can trigger the nucleationedy this difference by taking a model withgnp term
of vortices by a rather complex physical process. Indeedn the energy [7] which changes the critical velocities,
for a flow around an obstacle, the formation of bubblesglthough the physical behavior is qualitatively the same.
on the obstacle locally accelerates the fluid and therefor&his (P — P.)!/3 behavior has been explained by the ef-
it facilitates the nucleation of vortices. We also find thatfect of quantum fluctuations in the equation of state [7].

the critical flow speed for dissipation is decreased. We restrict ourselves to the cagg = p., since we
Our starting point is the “subcritical” NLS (SNLS) have seen that fas, < p. the sound speed is not defined
equation [4,5], which reads in dimensionless form sincedP/dp < 0 and the liquid is unstable.

) ! ) . Equation (1) can be written in Hamiltonian form as

Oy = =3 A = 2pcg By W0 (D) 5.0 = sH/sy", where H = [(3 Vg — plyl* +
where ¢y represents the wave function of the conden—% ly|)dx. The ground state for a fixed number of
sate andA is the Laplacian. With our notation, the particles (or for a fixed mean densipyp) is found via
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a Lagrange multiplierw. Comparing the free energy Contrary to what happens in the NLS equation, this
(H — uN) between the liquid and gaseous phases wequation may have more than one rgofor a givenv,
obtain for large density(po = 2p.) that the liquid which is at the basis of the bubble nucleation process.
is the only stable phase, because the free energy hahe problem of vortex nucleation is similar to that shown
only one minimum representing the liquid phase. Foin Ref. [1]; for low speeds we can always find a sta-
%pc = po = 2p. the vapor state is metastable while for tionary solution of Egs. (2) and (5) and thus the system
pe < po = %pc, the liquid phase is metastable. We does not dissipate because of the d’Alembert paradox.
will focus particularly on the domail% pe = po = 2pe, The nucloatloo of vortices occurs when the station-
in which the vapor is metastable. ary solution disappears, that is, when the continuity
The order parametep in the SNLS equation belongs €duation (2)V - [p(V$)V¢] = 0, which is elliptic at
to a continuum with the same topology as in the NLSIOW speed, becomes hyperbolic. This occurs when
equation. Thus the SNLS, like the NLS equation, hag'v[p(v)v] =0, where p is a function of v deduced
“vortical” solutions (points in 2D and lines in 3D): The from Eq. (5). This condition is a generalization of the
phase ofy turns by2mar, m is an integer (the “charge” Landao condltlo_n for superf]U|d|ty and we could inter-
of the vortex), around such a vortex. If one looks for aPret this as saying that vortices are nucleated when the
vortex solution of the formy = MR(pOr)eimgu, where cu_rrentp(u)v is a maximum. Near f[he homogeneous So-
r and ¢ are the polar coordinates centered at the vortefdtion (p = po), we find an approximation for the mass

core, thenR(s) satisfies density from Eq. (5): p = po[l — (v22 — v2)/2¢%],
, 5 where ¢ is the sound speedc? = 2p5(1 — p./po)l.

—%(R” + R _ m_R> + Consequently, we find exactly the same criteria for

s 52 vortex nucleation as for the NLS equation for the local
20, 2p¢ 3 s speed v: d,[pw)v] = po[l — Bv? — v2)/2c*] = 0.

<E N 1>R T po R°+ R =0, @ This gives a critical speed for the nucleation of vortices:

_ N vYr = /(2¢? + v2)/3. Wherever the local velocity

with the boundary condition®(0) = 0 and R() = 1. exceeds/*, the stationary solution of the fluid equation
Near s = 0, R(s) ~ A,s"! and R(s) tends to 1 for gisappears and a vortex is nucleated in such a way that
s — . Only vortices with|m| =1 are linearly stable. it owers the fluid velocity outside of its core to make it
Solving Eq. (4) numerically by the shooting method we|ess thamr everywhere.

getA; = 0.286 for g = , for example. For uniform steady flonw = v.., the critical speed is
Below we show that the SNLS equation can describg,, = ¢, i.e., the Landau criterion. But in general the flow
dynamical cavitation, as explained at the beginning. Bys created around an obstacle; in this case the maximum
analyzing numerical simulations in a simple problem ofof the velocity occurs on the boundary of the obstacle (in
2D flow around a disk we shall explain the interplay 2D, at low speed, this is becausg — iv, is an analytical
between the two processes of cavitation and vorteXunction of x + iy), where the vortex nucleation occurs.
nucleation. We assume that at infinity the flow isFor instance, for a cylinder in a horizontal flow, the
uniform, with a velocityv.. and a density,. Neglecting  velocity is maximum at the upper and lower points of the
the quantum pressure, we deduce from the Bernoulli limilisk, and the local speed is twice the velocity upstream.
of Eq. (3) for this steady flow configuration a relationship This gives the critical velocity at infinity for vortex

betweenp andv anywhere in the flow: nucleation v}*" = 1_216 [1]. For a sphere the speed
3 W2 = v2) + 2pe — podpo — 2pep + p* = 0. along the equator i§ v.., andv*r = \/gc.

For the SNLS equation, another phenomenon comes
(5) into play: The local density of the liquid diminishes
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FIG. 1. (a) The pressure for the SNLS model as a functionpgp. and (b) the sound speed/c(0) as a function of
the pressure, wherg0) is the sound speed & = 0. Thus we have?(0) = %pf.
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when the flow velocity is increased [see Eq. (5)]. Whenof the thickness of the boundary layer for— vf'® as

v is sufficiently high, such thap(v) = %pc, the liquid (vp® — v)~2is only fiction, since at infinity the liquid
phase becomes metastable against the formation df always stable, because we do not take into account the
a bubble of vapor. This leads to a critical velocity: variation of local speed as a distance from the obstacle.

v =o' = {2+ [(3g%/4 — 2¢ + 1)/(1 — g)]cH}\/2 For the 2D flow around a disk, we can approximate
(Maxwell point), where the energy density of the vaporthe thickness of the molecular boundary layer. For low
and of the liquid are the same. This criterion is only localspeeds it is given a function of the angular position
since it is not possible to achieve a speed greater tha#long the perimeter by the formuldd)/R = 1 + &[1 —

v in the whole volume fopy = 3/2p.. vwls?nﬁl/(vﬂjb)w]fl/z, wheres is roughly the ratio of the
When p(v) = p., the liquid phase is unstable. This healing length to the radius of the digk Figure 2(a)
defines another critical velocityp®® =[v2 + (1 —  shows the qualitative agreement with a numerical simu-

9)c2]"2, (>vp®), marking the linear instability of lation of a flow around a disk at low speed (such that a

the liquid phase. If the velocity reacheg® some- Stationary solution exists). -

where, a vapor bubble should grow spontaneously. AS v reaches a critical velocity slightly larger than
For example, in the two-dimensional disk a bubblethe Maxwell velocity at infinity (but smaller than."),
grows first where the velocity is maximum, that is, the interface betweegr = 0 and the flowing fluid at the
on the upper and lower points of the disk, wheretoP of the disk canlr)ugt form [therefore the region where
v = 2v.. This gives a critical velocity at infinity for v is greater thanuy™ should be big enough, so that
cavitation: (viy®).. = /(3g2/4 — 2g + 1)/3(1 — g)c, It explains why it occurs for a slightly larger velocity

(™), = /(I — g)/3 ¢, and as we have said for vortex than (vii"*)=]; so instead a bubble seed grows, and this

bubble growth is self-sustained, since the curvature at
the top of the bubble is larger than the disk curvature,
then the fluid is accelerated even more than when passing
by the disk, this increases the Bernoulli effect, and the
bubble growth again, etc. In our simulation, the whole
process brings the local velocity to the onset of vortex
> oLl ’ nucleation and of dissipation. As vortices begin to be
phase is metastable versus the liquid phase po. Inthis  gmitted; they carry on some vapor, having a low pressure
case(vy )= = 0.064c, v,"> = 0.34c, andv” = 043c.  core Finally this leads to a bubble caught behind the

The boundary conditions arg = 0 on the disk, which  gisk “as shown in Fig. 2. Notice that, for such a problem,
come from the mean-field theory of superfluid helium, asne final critical velocity at infinity for vortex nucleation

explained by Ginzburg and Pitaevsj2]. That is, there is is crucially decreased, because it is in the orde(n;{B)‘b)m

no helium inside the obstacle. Letus debitgribe the differenf,hen this self-sustained process appears.

flows asv.. is increased. Clearly, i < vy~ everywhere The created bubble can be compared to the Kirchhoff
(this condition is sufficient but not necessary), a stablg, ppje [8] since it is maintained by the emission of

stationary solution of Egs. (5) and (2) exists, and the flow,grtices " In fact, the bubble grows until it achieves a

is dissipationless, by the d’Alembert paradox. length whereas the vortices long to be released, detaching
With our boundary condition, the solid boundary be-themselves from the Kirchhoff bubble. Probably the
haves like a seed for cavitation, something that is welly,pple stops growing because it requires too much
known for ordinary fluids. To illustrate this, let us com- capillary energy to increase the length of its boundary.
pute the structure of the boundary layer that developSier the first pairs of vortices have been detached, the
to make the transition fromy = 0 on the disk to the pypple retracts itself because of surface tension. Indeed
density in the flowing fluid. This is accomplished, as-he surface tension can be defined directly from the SNLS
suming that the direction of the fastest variation is NOrgquation: This comes from the quantum pressure term
mal to the solid boundary, by solving the following 1D \hich we have often neglected, since it is particularly
amplltudei- equgtlon, deduced from Eg. (3) (here we takgyportant at the interface, where varies from 0 topy
Av” = v — v as a control parameter): over a small distance. However, vortices are periodically
_ %R// + [Av2/2 + (2p. — po)polR — nucleated near 'ghe solid wall, pulling the bubble again,
and also detaching themselves from the bubble. So the
bubble is maintained by these two antagonist processes:
surface tension and nucleation of vortices. This picture
with p = poR?. This 1D equation is integrable and agrees with recent experiments in superfluid®tHehere
yields the density profile near the wall depending onthe presence of vortices seems to be crucial in the
the local speed. Physically, a flow increases only thecavitation process [9].
size and the curvature of bubbles but does not lead to a In conclusion, it is a pleasure to thank S. Balibar,
nonstationary dissipative flow. Note that the divergenceC. Guthmann, H. Lambare, and E. Rolley for useful

nucleation (permanent dragyl’r = \/%c. For our
model cavitation occurs on the disk perimeter at a lowe
speed than that for vortex shedding.

We simulated a 2D flow, with a constant velocity at
infinity, v., around a disk withp./po = 0.6625 (this
models Hel at zero pressure well [7]), such that the vapor

2p.poR* + piR® =0,
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FIG. 2. (a) Numerical simulation of the flow around a disk, with= %; the flow moves from left to right; the disk is the

white circle in the middle of the figure. Dark color represents a low density. (a) For low spegéd,= 0.1, we can see the
thickness of the molecular transition layer, which is in good quantitative agreement with the predictions. For higher velocities,
vs/c = 0.22, (b) the vortices have been emitted and go downstream the disk, pulling back the vapor phase. (c) The vapor phase
stops growing whereas the vortices extract themselves from a kind of “Kirchhoff-bubble.” (d) The vortices are separated from the
Kirchhoff-bubble and follow the flow whereas other pairs of vortices are emitted.
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