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BP 6744, 45067 Orléans Cedex 2, France
4 Institut Jean Le Rond d’Alembert, UMR 7190 CNRS–Paris VI, Case 162, UPMC, 4 place Jussieu,
75252 Paris Cedex 05, France

E-mail: Jean-Louis.Rouet@univ-orleans.fr, Pascal.Brault@univ-orleans.fr and
Stephane.Cordier@univ-orleans.fr

Received 15 October 2007
Published 21 December 2007
Online at stacks.iop.org/JPhysD/41/022003

Abstract
We propose the first continuous model with long range screening (shadowing) that describes
columnar growth in one space dimension, as observed in plasma sputter deposition. It is based
on a new continuous partial derivative equation with non-linear diffusion and where the
shadowing effects apply on all the different processes.

Plasma sputtering is a common process for film growth which
often exhibits wide columns that are more or less close packed
and separated by thin deep grooves [1–4]. This columnar
growth results mainly from a shadowing instability [5–7],
where the elevated parts of the surface are more exposed to
the sputtering while they shadow the incoming particles to the
lower parts. The modelization of this shadowing instability
has been well described by probabilistic Monte Carlo (MC)
methods [8–10] and also with continuous models based on
partial derivative equations (PDE) [6, 7, 11–16] including the
seminal work of Bales and Zangwill [1]. However, both
approaches fail to describe at long times the strongly non-
linear columnar microstructures observed recently (see [2] for
instance). In fact, although the continuous models give tall
and well separated columns at early time, only few sharp peaks
remain later on [6,14,16]. Columnar structure using PDE has
already been obtained by Gillet et al [17] but in that case no
shadowing effect was taken into account. On the other hand,
discrete approaches using MC methods including shadowing
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have been developed and have shown a fair description of
the columnar structure, particularly through the formation of
sharp column sides. However, these models cannot avoid
the coarsening of the columnar structures showing larger and
larger plateau as time increases, in contrast to the experimental
observations.

The goal of this paper is to present a new continuous
non-local model which includes both non-linear shadowing
and diffusion effects to simulate columnar-like growth. We
consider a two-dimensional model where the one-dimensional
(1D) surface described by h(x, t) is subjected to receiving
particles from all directions not shadowed by the surface
itself. Our starting point is deduced from the models initially
developed by Bales and Zangwill [1] and by Karunasiri
et al [6]:

∂h

∂t
= R"(x, {h})

√
1 + (∇h)2 + ν∇2h + η, (1)

where the deterministic deposition term R is multiplied by
the solid angle "(x, {h}) which modelizes the shadowing
effect as a long-range screening (see figure 1). ν is the
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Figure 1. Shadowing process: interface h(x, t) and solid angle
"(x, {h}).

diffusion/relaxation coefficient while η is the usual noise
with zero mean 〈η〉 = 0 and its correlation given by
〈η(x, t)η(x ′, t ′)〉 = 2Dδ(x, x ′)δ(t, t ′).

For small surface angles, we retrieve a KPZ-like equation
[18] with shadowing effects (defining λ = πR):

∂h

∂t
= ν∇2h +

λ

2
(∇h)2 + R"(x, {h}) + η. (2)

A complete study of these equations has shown that it
is unable to reproduce columnar shapes corresponding to
experiments and MC simulations [7, 14]. Indeed, in the most
favourable situation, only broad peaks emerge instead of flat
columns. Experiments thus suggest that the diffusion should
be enhanced in the region more exposed to the flux. Moreover,
we will assume that the flux also increases (greater than for
normal shadowing) on the top of the columns compared with
the grooves. Although we have no strong argument for it, we
expect some point effect near the sharp edge to be responsible
for this process. We then propose the following stochastic
differential equation where the main ingredients are non-linear
shadowing effects and diffusion:

∂h

∂t
= g("(x, {h})) (R

√
1 + |∇(h)|2 + ν∇2h + η). (3)

In this equation g(") is a given function of the solid angle ".
Therefore, in order to increase the shadowing effect and the
diffusion from the top to the edges and bottom, g(") has to be
stronger than linear, and we will take later on for the numerics
g(") = "2. Multiplying the right-hand side by g(") leads to
an increase of the unshadowed top column growth rate while
the shadowed bottom of the column cannot grow. The diffusion
is also affected by the shadowing in the same way.

A plane-wave analysis performed on equation (3) shows
that the solutions are unstable for large enough wavelengths λ,
i.e. λ = 2π/k > λ∗ = νπ3/(αR), with α ∼ 0.724 and the
growth rate σ = kπ(2αR − νπ2k). Then, starting from a flat
substrate, the noise will trigger the instability and will drive
the system into a strong non-linear regime. Figure 2 shows the
evolution of the interface profile for different times for D = 1,
ν = 1 and R = 1. It exhibits the desired columnar shape.
This shape is characterized by flat column tops and vertical
sides as compared with previous MC simulations and columnar
growth experiments. The shadowed deposition favours the
columnar growth and the anisotropic diffusion smoothes the
top of the column very efficiently and leads to vertical sides.
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Figure 2. Continuous model. Snapshots of the interface given by
the non-linear shadowing anisotropic diffusion model given by
equation (3) at time t = 500, 1000, 2000 and 4000. The numerical
simulation was done with *t = 0.01, *x = 1 and the total size of
the system is L = 1024.
(This figure is in colour only in the electronic version)

The competition between these two effects leads to a columnar
regime as expected. Moreover, most of the columns formed at
the beginning of the simulation are still present at the end. This
is also the case for ‘Poisson/Wedding cakes’ morphologies
for which initial columns always remain [20] and for the step
meander process [17].

For numerical simulation, equation (3) is integrated using
the following explicit scheme:

hn+1
i = hn

i + ("n
i )

2
[
*tR

{
1 +

(
(hn

i+1 − hn
i )

2

+ (hn
i+1 − hn

i )(h
n
i − hn

i−1)

+ (hn
i − hn

i−1)
2)(3 *x2)−1}1/2

+
ν*t

*x2
(hn

i+1 − 2hn
i + hn

i−1) +

√
2D*t

*x
ε

]
, (4)

with the notation hn
i = h(i*x, n*t). ε is a random number

picked with the uniform distribution between [−1, 1[. To
obtain a discrete form of the gradient term, we follow the
scheme proposed by Lim et al although their study strictly
applied for the KPZ equation [19]. "(x, {h}) is evaluated
following [6].

The time evolution of the roughness W of the interface is
given in figure 3. It shows the existence of different regimes.
The first one, for t < 1, is driven by the fluctuations and
W scales as t0.5. For the second one (1 < t < 100),
diffusion induced a relative reduction of the roughness which
scales as t0.4. Then, because of the shadowing instability
described above, sharp canyons appear and the roughness
quickly increases. Finally, after t ∼ 1000, the columnar
regime appears which leads to W(t) ∼ t as in the discrete
model [14]. Even if W(t) shows the same scaling as obtained
in previous studies on the continuous columnar growth model
[14–16], the column shapes are rather different and are now in
closer agreement with the MC models and more important
with the experiments [3, 4]. Indeed, experiments display
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Figure 3. Continuous model. Roughness W(t) as a function of time.

relative constant column width, while MC simulations lead
to a column width which is increasing with time. In this
respect, our model (3) exhibits better qualitative agreement
with experiment than MC simulations.

We have presented the first continuous model, to our
knowledge, that exhibits a columnar growth without the
coarsening dynamics of the structures, in good agreement
with experimental observations on sputtering deposition. For
reproducing these wide flat columns with sharp edges, we have
introduced an increase in the relaxation and in the flux on
the top of the column compared with the grooves. For the
sake of simplicity, we have considered a 1D surface and we
have taken the same non-local and non-linear multiplicative
factor g("(x, {h})) for all the terms of the dynamics. Further
on, we have considered a simple power law behaviour for
this function g("(x, {h})) = "n. We argue that n > 1 is
needed to enhance the shadowing effects on the protuberances.
We have tested numerically n = 2 and n = 3 with no
loss of properties of the results. However, a better choice of
the shadowing function g should be obtained through further
experimental comparisons. Similarly, different shadowing
functions should be considered in the future for the diffusion
term and the deposition term. Finally, this new continuous
model, with n = 2, considered as a minimal model, already
correctly reproduces the formation of flat wide columns,
with sharp edges and thin separating grooves, as usually
encountered in sputtering deposition. Further works should
perform such approaches to two-dimensional surfaces in
particular.
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