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The wave map system

Let (N,v) be a riemmannian manifold and assume N — R™ with isometric
embedding.

Thus one can define for every point p € N the tangent and normal space T, N
and T;-N.

Definition : Wave map
Extrinsic definition : U : R x R™ — N is a wavemap if

Vt,x OU(t,z) L Tyz)N.

Intrinsic definition (abstract setting) : U is a wave map if it is a critical point of
the action (n = diag(—1,1...,1))

S(U) = //%‘jaa U0 U™ da™dt.
Euler-Lagrange system :

{ Vi=1...n, OU"+ T8, U70*U* =0,
(U, U)li=o0 = (Vo, Uh).
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Equivariant wave map
Assume N = [0, R[x$™ ! has polar coordinates (p, x), and the metric writes
ds* = dp® + g*(p)dx>,

where ¢(0) =0 and ¢’(0) = 1.
Denote z = (r,w) the polar coordinates in R™. A wave map U is said to be
equivariant if there exist an angle function x( such that :

U(t,r,w) = (u(t,r),xo(w)) € N.

A CNS to the existence of such U is that xo be a harmonic polynomial.

Let k be the degree of ¢ (if £ =1, U is said to be corotational).

The wave map system is then reduced to a single equation on u : R; x R}f — R
(denote f = ¢'g) :

n—1 _sz(u)

Ur = 5

Ut — Uppr —

(u, ut)|e=0 = (uo, u1). '

@ g =sin : case of the sphere N = $2.
e g(p) = p(2 — p) : critical (4D) radial Yang-Mills field.
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Elementary properties

Conservation law : energy
E(U) :/|Du(t)\2da:” = /\Ut|2 + |V, U|*dz™ = const.
For an equivariant wave map, this write :

2,2
E(u) = / (uf +ul + kgﬂ(u)) r"~!dr = const.

Scaling
Denote Ux(t,z) = U(At, Az). Then

Uy, wave map <= U wave map, | UAI%, = A2 U3,

H™/? is a critical space.

In particular, for n = 2, E(Uy) = E(U). Dimension 2 is the critical dimension.

Raphaél Céte (Ecole polytechnique) Blowup for wave maps January 22nd 2008

5/

24




Finite speed of propagation

The energy is decreasing on incoming cones :

/ |DU (to)|* dz™ < / |DU (ty + 7)|*dz™.
B(zo,R) B(zo,R+]T])

In particular, if (U(¢t =0), Us(¢t = 0)) is supported in B(xg, R), then U(t) is
supported inB(zg, R + t).
Notation (for equivariant wave maps) :

b 2
E(u,a,b) = / (u? +u? + kigu)) =1y

Finite speed of propagation is often used in the form :

E(u(t),0,R) < E(u(t+17),0, R+ |7])
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Local Cauchy theory for general wave map

Results of the type :
Given initial data (U, U;) € H® x H*™!, there exist a unique wave map
(U, Uy) € CH[0, T),H®) x C°([0, T), H*~1), where
T = T(||[Uolla+, | Ur]l =)
e s > n/2+ 1, Choquet-Bruhat.
@ s> (n+1)/2, n> 3, Klainerman and Machedon 93.

@ s> n/2, n >3, Klainerman and Machedon 95.

@ s> n/2, n =2, Klainerman and Selberg 01.

Proofs relies on a priori estimates using Strichartz inequality and the null-structure
of the wave map system (algebraic fact).

This kind of results in a critical space gives global well-posedness.

e n=1,s>1: global existence (Keel and Tao 98).
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Global regularity for small data

Results of the type :
Let X be a critical space : ||(Ux, Uy)|lx = (U, Up)|| x-
There exists € > 0 such that ||(Up, U1)]|x < &, then the arising wave map
U € C([0,00), X) is global in time.
o X = B;{Q X 3242_1, Tataru 1993.
o X = H"/? x H"/zfl, equivariant case, Shatah and Tahvildar-Zadeh, 94.
o X = H"? x H"/?1 N =8 n>5then n > 2, Tao 00-01.
o X = H™? x H"/2~! |arge class of manifolds, n > 2, Tataru 04.

See also : Klainermann and Rodnianski 01, Shatah and Struwe 02, Nahmod,
Stefanov and Uhlenbeck 02, Krieger 03.

Method of proofs : Strichartz estimates, null-structure and geometrical aspects
j k
(eg. F;k = _Fji)'
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Il posedness and blow up in high dimension

e If s < 5, the wave map system is ill-posed in H*® x H*~! (D'Ancona and
Georgiev 04).

This is a typical result in subcritical spaces. Instantaneous blowup can happen, as
well as non uniqueness of strong solutions.

e If n > 3, smooth initial data can lead to finite time blow up solutions :
explicit self-similar equivariant wave maps (Shatah 88).

o If n > 7, finite time blow up can happen even on negatively curved manifolds
(Cazenave, Shatah and Tavildhar-Zadeh 98).
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Blow up : energy concentration

In critical spaces, blow up happen if energy concentrates at some point.

From now on, we will focus on the equivariant case.

Blow-up (at time T*) can only happen at r = 0, and as energy decays on cones
one must have :

lim inf E T* — 1) > &o.
im in (u(t),0, t) > eo

In fact, energy has to concentrate faster.

Theorem (Shatah and Tahvildar-Zadeh 92)

Let u be an equivariant wave map blowing at time T*. Then there exists
A(t) = o(T* — t) such that

lim B(u(t). 0, (1)) = 0.

This rules out a blowup senario with self-similar rate.
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Blowup profile

Theorem (Struwe 03)

Assume u blow-up at T* = 0. Then there exist two sequences t,, T 0 and
A = o(t,) such that :

Wty + At Anr) = Q HL((—1,1) x RY),

where Q) is a non-trivial harmonic map : AQ = f(Q)/r?.

Ideas of proof :

@ The energy bound provides a weak limit u*.

7]

A subtle reformulation of il ft u? (T, r)rdrdT — 0 shows that u* is
constant in time, and hence a harmonlc map.

Using the equation, convergence is reinforced to local strong H'.

The scaling choice ensure that «* is non trivial.
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Assume g(p) > 0 for all p > 0. Then any wave map u is global in time.

(The condition is equivalent to the fact that there exist no non trivial harmonic
map on N).

Denote Fy = min{F(Q)|Q harmonic}.

Let u be a wave map which blow ups at time T = 0. Then u concentrates an
energy of at least Ey:

lim £ > Ey.
tl%l (U(t),o, |t|) = L0

In particular, E(u) > E(Q).
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In fact there is the following more precise result for wave maps with energy less or
equal than Ej.

Theorem (R.C., Kenig, Merle 07)
Let k =1 or2 and u be a wave map with energy E(u) < Ey. Then we have the
dichotomy :
o u scatters (in the sense that there exist Uy € H' such that
|U(t) — e®™VAUL| 1 — 0 as t — +00).

@ u is a harmonic map (and is constant in time).

From now on, we assume g vanishes at some point C* > 0 : g(C*) = 0. To fix
ideas, we set g = sin.
Hence, there exists a harmonic map @, which joins 0 to C* = 7.

We study long time dynamics around @ (and the family Q,).

Raphaél Céte (Ecole polytechnique) Blowup for wave maps January 22nd 2008 13 /24



Previous results regarding long time dynamics

@ Numerical simulations : g = sin, k£ = 1, Bizon, Chmaj and Tadeusz 01.

@ Formal blowup and blowup rate : 4D Yang-Mills (k=2), Bizori, Ovchinnikov
and Sigal 03.

@ () is strongly instable in the energy space (for all g, k)

2
H:{u ||u||%,:/(u3+uQ> rdr<oo}.
r

Theorem (R.C. 05)

Given \g > 0, there exist a sequence of finite energy wave maps u,, and of time t,
such that

0 (Un,uUn;) — (@,0) in H X 12,
0 (Un(tn); Uns(tn)) — (Qno,0) in H x L2.

Ideas of proof : regularization of self-similar wave map and finite speed of
propagation.
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Theorem (Rodnianski and Sterbenz 06)

Let k > 4, g = sin. There exist € > 0 and initial data (ug, uy), with energy
E(ug, u1) < Ey + &2 such that the following holds. The arising wave map u blows
up in finite time T*, and there exists \(t) > 0 such that for t € [0, T*),

\ln(T*ft)\.

(u, ur) = (@rne) Ollaxre Se and  A(t) = Co(1 4+ O(Ve)) T 1

where Cy is an explicit constant.

| A\

Theorem (Krieger, Schlag and Tataru 06)

Let k=1, g =sin. Fixv >, \(t) = t~17%, and a large integer N. Then there
exist a wave map u defined on [—ty,0) such that :

u(t, r) = Qx)(r) + us(t, ) +e(t, 1),

with E(uc(t),0,[t]) < (tA[t])~21In? |t and

e teell o g S B(®),0,1e) S ¥ as 10,

loc
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Proof

sin 2u
2r2
Denote R = 5 Qx|,_, = 79, Q = ksin Q and the rescaled family
Ry =7r0,.Qy\ = ksin Q).
R, Ry € L? = L*(rdr) if and only if k > 2.

1
Ot — Opru — —0pu = —k? (Wave map)
T

Linearized operator around @) :

1 k2
Hy, = -0, — -0, + —5 COs 2Qy.
r r

Critical setting : Hy\Ry = 0.

Initial data :

{ u|t=0 = @ + v9 where (v, R) =0,
€
R+U17

=0 = TR];

with ||’U0HH2,1 + ||1}1||H2,1 < e3/2,
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Modulation theory
(cf. Weinstein 83).

Decomposition of u
u(t,r) = Qx(r) +v(t,7),
with
02
/ (uf + 2 + 2) rdr <%, (v, Ry) = 0.
T

This defines v uniquely.

A
As a by product, one gets ‘—’ < ¢ for all time.
Also notice A(0) =1 and A(0) = AT T 0 3/2),

Equation on v and A :

'Utt+H)\'U—_Q/\+N( )s

XV a\ %) TR

oM pd <A> A (2 ) + (0, Fo) + (N(0), R)).

where N(v) =

17 / 24
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H) positive, with one embedded eigenvalue (0) associated to R).

Decomposition of Hy = Ay A} where

k 1k

Ay = =0, + — cos Qx, N =—0r+ =+ —cos Q.
T T T

Super symetric companion of H)

. 1 k?+1 2k
Hy = AKA)\ = —Opr — ;ar + r2 + ﬁ COS Q)\ .

V)\(’F)
V is positive and space-time repulsive, with some uniformity in A.

k—1)2 2(k —1)2 A o2k2
u _8TV>\ 2 (rizg)y _8tV)\ = X'?SIHQ Q)\.

)

Vi >

Also : -
. . A
[0¢, Ax] = AF1y, [Os, Ax] = AFay + TFSM

for some explicit functions Fy, Fy, Fs.
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Further decomposition v and final equation

We write
v=wp+ w, suchthat (wy,Ry)=0 and Hywy= Qh.

This can be solved explicitly !
\2

U=

(—HTRHQLQR,\ + (’I“QR),\) .

Equation on W = Ayw :

OuW + H\W
= —Ax(woet) + [Onr, Ax]w + ANN(v)
= ﬁt(A)\(?two) =+ [6t, A)\]((?two) + 2675([(975, A)\]U)) — 8“(14)\)111 + A/\N(’U) .

main source non-linear error terms
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Morawetz estimate on 9, + H,.

o + ]%\w =0;G+ H. (linear wave equation with H, operator)

Let 0 < d < 1, denote L = 0, + 0 Aw—l()‘r)(; (sz)2+72 nd
© Aenote HE G T O A= T 2 )@

B () = sup / (Ad)rdr + /O t / %(Aw)rdrds,

0<s<t

B o(GLH) :/Ot/ (Ar)? ((0-G)? + e(AG)? + H?) r¥drds + sup /% (Ar)? G2 rdr

A 0<s<t 1+ 79
Then, under the assumptions A > 0 and /'\//\2 < &, we have

Eis(¢¥) S % (Eos(v) + F5(G, H)), (Morawetz)

where the implicit constant does not depend on A, ¢ and ¢.

Proof : Use of an adequate multiplier on the equation, integrations by parts and
repulsive properties of H).
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From the Morawetz estimate and under the bootstrapping assumptions :

A>0, te[0,e77] (1)
. )’\2 )’\2 )’\4
A—2-| <20 +2C &'+ sup = | A2 2
N a)\+ <€ +o§§§)t)\7> ) (2)
t 34
/0 ~<ace (3)
We get :
)'\4
F; s(Main terms) <& + ¢ sup -
0<s<t A
)'\4

F, s5(Error terms) < (1 4 t°)e®E,; (W) + ¢ sup D
0<s<t A

and we obtain the main estimate on W :
)'\4
E.s(W)<S (1+ t‘s)aQEt,g(W) +et+¢e sup Y (4)

0<s<t
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Going back to the equation on )\

IRI: % (j) = 201 (v, Ba)A) = 2{v, R)A = (0, ) A + (N(0), Ra)

Using the main estimate on W (4) together with elliptic properties of A allows

to bootstrap assumption (2).
t A4
= —/O C*V + E(s) | ds, (5)

Upon integration in time we get
where C, = %HT‘RH%Z .is e-xplicit (comes from terms purely in wp) and € is an error
term (terms in w) satisfying

‘ ¢
A .
”R”%ﬂﬁ — 2(v, 70 R))AN

0

4 A
E(t) Se*+¢e sup —.
() ogsrg)t AT
Notice that
. .o . A
(v,r(’)TR,\M)\‘ < )\)\H;HB)\ 1720 Rl 2 < 5.

PP

/ 24
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It remains to study the ODE (5) to complete the bootstrap argument and to show
blowup. We rewrite it in the more manageable form

. . t \4
(IRIZ: + O(E)A = (| RIZ2A0) + O(%) X = X / (ci + e<s>> ds. (5)

~ell Rl 2

)'\4
Consider the quantity e fix a large constant C' and define T such that
A A A 4
vt e [0, TT], 37 < 0t and v(T*) = Ce* > 0.
o Initially, M*A~7 ~ &% so that T'T > 0.
o TT is finite and satisfies 7T < e~!, otherwise % >
which leads to A — 0o and AM*A\~7 > X — 0.

S| R[> on that interval,
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o Compute

i )\74 —&4_0 5&4_544_ su )\74 )\73
dt \ 7] T a8 A3 ogslgg)tA7 A%

Then at time T, % (/\—j) >(1- Ce)% > 0, and this estimate bootstraps

\4 . . . .
to show that % > Ce* and is an increasing function.

@ From this one shows \(t) — co as t | T* for some T* < =% <« 7% (finite
time blowup).

e From this analysis, assumption (1) is also bootstrapped : on [0, 7] as well as
on [TT, T%).

@ Plugging this information again in (5) shows bootstrap assumption (3).

@ Going back carefully through the previous steps allows to compute the blow
up rate

In(T*—t
Mt) = Col1+ 0(e) Y01

(where Cp is an explicit constant).
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