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1 Physical context

Ablation front in the inertial confinement fusion of Deuterium and
Tritium

Study of the propagation of a defect in the target (which is not a
perfect sphere) :

we need to obtain the critical density for the beginning of the
thermonuclear reaction, and growth of defects can prevent this
Model presented here :

the ablative Rayleigh-Taylor system in a strip with constant gravity
and continuous transition between the high density p, and the

vacuum (p — 0);
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e Mixing of fluids : modeled by a variable density in the medium.
e Presence of gravity.

e Fuler equations.

e Energy equation : thermal conduction model.

e (Quasi-isobaric model with Fourier law :

div(CppTti + k(T)VT) =0, pT = cst, k(T) = kT, p = pT




Model system 0 (introducing Z(p) =

By(pid) + div(pii @ @ + pId) = pg
| div(ii + LoV, VZ(p)) = 0.

Stationary solution po(z) = pa€(7-), uo(z) = —%, po solution of

(p— 225" = pag€, where ¢ satisf
P z = pa.g9&, where & satisfies

£=¢"T(1-9).

Concentrate on py only. and forget this system and solution.




2 Euler equations with gravity around a

general profile

Profile (po(x), 0, po(z)) with Vpo = pog. Introduce ko(z) =
Euler in 2d : z € (—o0,4+00), 2z € [0, al.

System of Euler equations in the unknowns

— _ Po(x) _ P—po(fb‘) .
Ul = ey 4= @

Particular solution (0, 1,0).




Linearized system (operator Emod) :

( 8,5T1 — koul =0
Oty + Thg+ Vg1 + ko(x)gier =0

L diVﬁl =0

Linearized system with left hand side

" 0,1, — Eou1 = So
Oyti1 + ThG+ V1 + ko(x)g1€1 = S

L diV’LTl =0




Rayleigh equation (1) : apply 0;02 on the equation on u; and use
O/ and 0Zq1 = 00, uq :

020%u1 + ghko(x)0?u1 + py 0 (po0r0?ur)
= 0,0°51 — g0?2Sy — pglax(poatazsl).

Rayleigh equation (2) : seek uq (¢, z, z) = u(x)e" cos kz in the

homogeneous equation :

gk?
0" — ko(x)d' + (k% + 7/{0(96))@ =0

Solution

., sinkz ko(x)

. Y
(11 cos kz, —y

P Coskz,—ﬁ”lcoskz)ew.




Rayleigh equation (2) :

Rayleigh equation (27) :

—2 . g 1. o, Lo




Assume kg > 0. From (2’), integrating, one deduces

— g > 0 = no solution such that 7?2 real positive

— if 42 > (maxkg)|g| = A?, no solution
— if 42 > |g|k, no solution
the last equality thanks to
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3 Semi-classical result

Condition : £y has a unique nondegenerate maximum.

This condition is satisfied by ko(z) = % = £Y(1 — &). Maximum at
£ = VLH This leads to

Proposition

There exists a hg > 0 such that, for all £ > =, there exists a
sequence vy, (k) such that

9] mas gl 1
2R gyl ()

This proves that there exists at least one value of v and one value of
k such that v € (5, A).

= 0(k™2).
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4 Nonlinear result

Under the assumptions kg bounded (as well as all the derivatives)

_1
and admits at least a nondegenerate maximum, kgp, > bounded,

there exists an initial value for (2) close (in a § sense) to the
stationary solution which departs in a time of order ln% of a given
finite quantity from this solution.

No need of pg > pmin > 0. Need pg > 0 everywhere.
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5 The Duhamel principle

Energy equality :
Note that system (3) leads to the equation on the incompressible

quantity u :
04 + kourd + pg ' 0x(podeq) = 9:.S — Sog.

from which one deduces

%f(p()(atﬁ)z -+ kopogu%)da:dz — %f(po(atﬁ(()))z + kOpogul(O)Q)dZCdZ
= [1(J po(8:S — Sog)driidzdz)ds
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General result :
The solution of
L2 ([(po(Oriin)? — g2 po(un)?)dudz) = g(t, z, yiin)
5 di 0(OtUN 95, POLUN g\t, T, 0tun
with initial condition iy (0), un(0), with the assumption
1
l9(t, z, 0 )| < K(t)|]pg Ortin|| >
where K is a positive increasing function for ¢ > 0 satisfies the

inequalities

lpdin||2 < [C+ [y VE(s)e Asds]e?!
10 Osiin|| < [Ch + [y /K (s)e=Asds]2e

where (1 depends on the initial data.
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Result for the linear instability with mixing of modes :
Let T4 (t), u1(t) be the solution of the linearized Euler system. There
exists a constant (s depending only on the characteristics of the

system, that is of kg and |g|, such that

1pE T1 ()| mr=+||p2 1 (8)|| s < Cs(1+2)°e™ (|| pE T1(0)|| 1=+ |p& i1 (0)|| 1)
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6 Weakly non linear approximate

solution of order N

We use the Grenier construction, called the weakly non linear
expansion (or solution in the physics solutions) :

(TN, uN, N, V) = (1,0,0,0) + S0, 67U

with U j( x,2,0) =0 for j > 2 and U; solution of the linearized system
(with k, a growth rate y(k) € (5§, A) and 4). Obviously

(Emod)(U;) = S(Uy,...,U;_1).

Goal : identify a time 1T', two constants Cy and M, such that

U2 < Mo(Co) eVt ¢ < T

= the sequence Z;\le 65U ; converges normally in L? for

1 1
t < ~) In o5
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Counting terms in the left hand side and estimates :

This result relies on a recurrence, in which one must control the
behavior in /N of the left hand term of the equation on Uy.
Time derivative 0,55 : N

Number of terms (using the quadratic nonlinearity) : N

Behavior of Ky(s) : N2eNv(k)s
' — Noy(R)—A
= Jy VEn(s)eMds < grpigeT 7 .
and for y(k) > % and N > 2 bounded independantly on V.

Rk : not possible to do so when cubic nonlinearity.

N~(k)—A
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7 Nonlinear solution

Consider a solution (7', i, q) of the Euler system (2) such that
(T,,q)(0) = (1,0,0) + 06U (0).
Denote by (T, 7, ) the difference (T',,q) — UY.

Moser estimates and usual energy equalities =
1 1 1

control on p ¥, py 2T, py 24

Use the nonlinear equation and write as a source term
1 1

kou = (kopg 2)pgu : one gets estimates on 7', ¥ and py 'q.
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End of the prootf :

i =0+ 6ty + 02 Y, 697207
First term controlled by €
Last term controlled by §2C

Leading term is the second one : can be of order %
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