Non linear instability of the incompressible Euler with gravity equations in the ICF context Olivier LAFITTE ${ }^{\dagger}, * \ddagger$, IHP, February, 22ns, 2008
${ }^{\dagger}$ Université Paris XIII, LAGA, 93430 Villetaneuse Cedex ${ }^{\ddagger}$ CEA Saclay, DM2S-DIR 91191 Gif sur Yvette Cedex
*Email: olivier.lafitte@mines.org

1 Physical context

Ablation front in the inertial confinement fusion of Deuterium and Tritium
Study of the propagation of a defect in the target (which is not a perfect sphere) :
we need to obtain the critical density for the beginning of the thermonuclear reaction, and growth of defects can prevent this Model presented here :
the ablative Rayleigh-Taylor system in a strip with constant gravity and continuous transition between the high density ρ_{a} and the vacuum $(\rho \rightarrow 0)$;

A (noncomplete)list of references :
J.W. Strutt (Lord Rayleigh) 1883
G. Taylor 1950
S. Chandrasekhar1961
H.J. Kull and S.I. Anisimov 1986

TAKABE ET AL 1996
V. Goncharov 1998
E. Grenier 2000, L 2000
C. Cherfils, L, P.A. Raviart : 2001
J. Garnier, C. Cherfils, P.A. Holstein 2003
S. Cordier, E. Grenier and Y. Guo 2003
Y. Guo and H.J. Hwang 2003
B. Helffer and L 2003, 2007
P. Clavin and L. Masse 2004
B. Desjardins and E. Grenier 2006
R. Poncet 2007

- Mixing of fluids : modeled by a variable density in the medium.
- Presence of gravity.
- Euler equations.
- Energy equation : thermal conduction model.
- Quasi-isobaric model with Fourier law :

$$
\operatorname{div}\left(C_{p} \rho T \vec{u}+\kappa(T) \nabla T\right)=0, \rho T=c s t, \kappa(T)=\kappa_{0} T^{\nu}, p=\rho T
$$

Model system 0 (introducing $Z(\rho)=\frac{\rho_{a}^{\nu+1}}{(\nu+1) \rho^{\nu+1}}$):

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho \vec{u})=0 \tag{1}\\
\partial_{t}(\rho \vec{u})+\operatorname{div}(\rho \vec{u} \otimes \vec{u}+p I d)=\rho \vec{g} \\
\operatorname{div}\left(\vec{u}+L_{0} V_{a} \nabla Z(\rho)\right)=0 .
\end{array}\right.
$$

Stationary solution $\rho_{0}(x)=\rho_{a} \xi\left(\frac{x}{L_{0}}\right), u_{0}(x)=-\frac{V_{a}}{\xi}, p_{0}$ solution of $\left(p-\frac{\rho_{a} V_{a}^{2}}{\xi}\right)^{\prime}=\rho_{a} g \xi$, where ξ satisfies

$$
\dot{\xi}=\xi^{\nu+1}(1-\xi) .
$$

Concentrate on ρ_{0} only. and forget this system and solution.

2 Euler equations with gravity around a

 general profileProfile $\left(\rho_{0}(x), \overrightarrow{0}, p_{0}(x)\right)$ with $\nabla p_{0}=\rho_{0} \vec{g}$. Introduce $k_{0}(x)=\frac{\rho_{0}^{\prime}(x)}{\rho_{0}(x)}$. Euler in 2d : $x \in(-\infty,+\infty), z \in[0, a]$.

System of Euler equations in the unknowns
$\vec{u}, T=\frac{\rho_{0}(x)}{\rho(x, y, t)}, q=\frac{p-p_{0}(x)}{\rho_{0}(x)}:$

$$
\left\{\begin{array}{l}
\partial_{t} T+(\vec{u} . \nabla) T=k_{0} u T \tag{2}\\
\partial_{t} \vec{u}+(\vec{u} . \nabla) \vec{u}+(T-1) \vec{g}+\nabla q+k_{0}(x) q \vec{e}_{1}=0 \\
\operatorname{div} \vec{u}=0
\end{array}\right.
$$

Particular solution $(\overrightarrow{0}, 1,0)$.

Linearized system (operator Emod) :

$$
\left\{\begin{array}{l}
\partial_{t} T_{1}-k_{0} u_{1}=0 \tag{3}\\
\partial_{t} \vec{u}_{1}+T_{1} \vec{g}+\nabla q_{1}+k_{0}(x) q_{1} \vec{e}_{1}=0 \\
\operatorname{div} \vec{u}_{1}=0
\end{array}\right.
$$

Linearized system with left hand side

$$
\left\{\begin{array}{l}
\partial_{t} T_{1}-k_{0} u_{1}=S_{0} \tag{4}\\
\partial_{t} \vec{u}_{1}+T_{1} \vec{g}+\nabla q_{1}+k_{0}(x) q_{1} \vec{e}_{1}=\vec{S} \\
\operatorname{div} \vec{u}_{1}=0
\end{array}\right.
$$

Rayleigh equation (1) : apply $\partial_{t} \partial_{z}^{2}$ on the equation on u_{1} and use $\partial_{t} T_{1}$ and $\partial_{z}^{z} q_{1}=\partial_{t} \partial_{x} u_{1}:$

$$
\begin{align*}
& \partial_{t}^{2} \partial_{z}^{2} u_{1}+g k_{0}(x) \partial_{z}^{2} u_{1}+\rho_{0}^{-1} \partial_{x}\left(\rho_{0} \partial_{x} \partial_{t}^{2} u_{1}\right) \tag{5}\\
& =\partial_{t} \partial_{z}^{2} S_{1}-g \partial^{2} z S_{0}-\rho_{0}^{-1} \partial_{x}\left(\rho_{0} \partial_{t} \partial_{z} S_{1}\right) .
\end{align*}
$$

Rayleigh equation (2) : seek $u_{1}(t, x, z)=\hat{u}(x) e^{\gamma t} \cos k z$ in the homogeneous equation :

$$
\begin{equation*}
-\hat{u}^{\prime \prime}-k_{0}(x) \hat{u}^{\prime}+\left(k^{2}+\frac{g k^{2}}{\gamma^{2}} k_{0}(x)\right) \hat{u}=0 \tag{6}
\end{equation*}
$$

Solution
$\left(\hat{u}_{1} \cos k z,-\hat{u}_{1}^{\prime} \frac{\sin k z}{k}, \frac{k_{0}(x)}{\gamma} \cos k z,-\frac{\gamma}{k^{2}} \hat{u}_{1}^{\prime} \cos k z\right) e^{\gamma t}$.

Rayleigh equation (2'):

$$
\begin{equation*}
-\frac{d}{d x}\left(\rho_{0} \hat{u}\right)+\left(k^{2} \rho_{0}+\frac{g k^{2}}{\gamma^{2}} \rho_{0}^{\prime}(x)\right) \hat{u}=0 \tag{7}
\end{equation*}
$$

Rayleigh equation (2") :

$$
\begin{equation*}
-k^{-2} \frac{d^{2}}{d x^{2}} \hat{w}+\left(1+\frac{g}{\gamma^{2}} k_{0}(x)+\frac{1}{2} k^{-2}\left(k_{0}^{\prime}+\frac{1}{2} k_{0}^{2}\right)\right) \hat{w}=0 \tag{8}
\end{equation*}
$$

Assume $k_{0} \geq 0$. From (2^{\prime}), integrating, one deduces
$-g>0 \Rightarrow$ no solution such that γ^{2} real positive

- if $\gamma^{2}>\left(\max _{0}\right)|g|=\Lambda^{2}$, no solution
- if $\gamma^{2}>|g| k$, no solution
the last equality thanks to

$$
\left(1-\frac{|g| k}{\gamma^{2}}\right) \int \rho_{0}\left(\left(\hat{u}^{\prime}\right)^{2}+k^{2} \hat{u}^{2}\right) d x=\frac{|g| k}{\gamma^{2}} \int \rho_{0}\left(\hat{u}^{\prime}-k \hat{u}\right)^{2} d x
$$

3 Semi-classical result

Condition : k_{0} has a unique nondegenerate maximum. This condition is satisfied by $k_{0}(x)=\frac{\xi^{\prime}(x)}{\xi(x)}=\xi^{\nu}(1-\xi)$. Maximum at $\xi=\frac{\nu}{\nu+1}$. This leads to

Proposition

There exists a $h_{0}>0$ such that, for all $k \geq \frac{1}{h_{0}}$, there exists a sequence $\gamma_{n}(k)$ such that

$$
1-\frac{|g|}{\gamma_{n}^{2}(k)} k_{0}^{\max }+\left(\frac{|g|}{2 \gamma_{n}^{2}(k)}\left|k_{0}^{\prime \prime}\right|\right)^{\frac{1}{2}}\left(n+\frac{1}{2}\right)=0\left(k^{-\frac{3}{2}}\right) .
$$

This proves that there exists at least one value of γ and one value of k such that $\gamma \in\left(\frac{\Lambda}{2}, \Lambda\right)$.

4 Nonlinear result

Under the assumptions k_{0} bounded (as well as all the derivatives) and admits at least a nondegenerate maximum, $k_{0} \rho_{0}^{-\frac{1}{2}}$ bounded, there exists an initial value for (2) close (in a δ sense) to the stationary solution which departs in a time of order $\ln \frac{1}{\delta}$ of a given finite quantity from this solution.
No need of $\rho_{0} \geq \rho_{\text {min }}>0$. Need $\rho_{0}>0$ everywhere.

5 The Duhamel principle

Energy equality :
Note that system (3) leads to the equation on the incompressible quantity \vec{u} :

$$
\partial_{t^{2}}^{2} \vec{u}+k_{0} u_{1} \vec{g}+\rho_{0}^{-1} \partial_{x}\left(\rho_{0} \partial_{t} q\right)=\partial_{t} \vec{S}-S_{0} \vec{g}
$$

from which one deduces

$$
\begin{aligned}
& \frac{1}{2} \int\left(\rho_{0}\left(\partial_{t} \vec{u}\right)^{2}+k_{0} \rho_{0} g u_{1}^{2}\right) d x d z=\frac{1}{2} \int\left(\rho_{0}\left(\partial_{t} \vec{u}(0)\right)^{2}+k_{0} \rho_{0} g u_{1}(0)^{2}\right) d x d z \\
& =\int_{0}^{t}\left(\int \rho_{0}\left(\partial_{t} \vec{S}-S_{0} \vec{g}\right) \partial_{t} \vec{u} d x d z\right) d s
\end{aligned}
$$

General result :
The solution of
$\frac{1}{2} \frac{d}{d t}\left(\int\left(\rho_{0}\left(\partial_{t} \vec{u}_{N}\right)^{2}-g \frac{\rho_{0}^{\prime}}{\rho_{0}} \rho_{0}\left(u_{N}\right)^{2}\right) d x d z\right)=g\left(t, x, \partial_{t} \vec{u}_{N}\right)$
with initial condition $\partial_{t} \vec{u}_{N}(0), \vec{u}_{N}(0)$, with the assumption $\left|g\left(t, x, \partial_{t} \vec{u}_{N}\right)\right| \leq K(t)\left\|\rho_{0}^{\frac{1}{2}} \partial_{t} \vec{u}_{n}\right\|_{L^{2}}$
where K is a positive increasing function for $t \geq 0$ satisfies the inequalities

$$
\begin{aligned}
& \left\|\rho_{0}^{\frac{1}{2}} \vec{u}_{N}\right\|^{\frac{1}{2}} \leq\left[C_{1}+\int_{0}^{t} \sqrt{K(s) e^{-\Lambda s}} d s\right] e^{\frac{\Lambda}{2} t} \\
& \left\|\rho_{0}^{\frac{1}{2}} \partial_{t} \vec{u}_{N}\right\| \leq\left[C_{1}+\int_{0}^{t} \sqrt{K(s) e^{-\Lambda s}} d s\right]^{2} e^{\Lambda t}
\end{aligned}
$$

where C_{1} depends on the initial data.

Result for the linear instability with mixing of modes :
Let $T_{1}(t), \vec{u}_{1}(t)$ be the solution of the linearized Euler system. There exists a constant C_{s} depending only on the characteristics of the system, that is of k_{0} and $|g|$, such that
$\left\|\rho_{0}^{\frac{1}{2}} T_{1}(t)\right\|_{H^{s}}+\left\|\rho_{0}^{\frac{1}{2}} \vec{u}_{1}(t)\right\|_{H^{s}} \leq C_{s}(1+t)^{s} e^{\Lambda t}\left(\left\|\rho_{0}^{\frac{1}{2}} T_{1}(0)\right\|_{H^{s}}+\left\|\rho_{0}^{\frac{1}{2}} \vec{u}_{1}(0)\right\|_{H^{s}}\right)$

6 Weakly non linear approximate solution of order N

We use the Grenier construction, called the weakly non linear expansion (or solution in the physics solutions) :
$\left(T^{N}, u^{N}, v^{N}, q^{N}\right)=(1,0,0,0)+\sum_{j=1}^{N} \delta^{j} U_{j}$
with $U_{j}(x, z, 0)=0$ for $j \geq 2$ and U_{1} solution of the linearized system (with k, a growth rate $\gamma(k) \in\left(\frac{\Lambda}{2}, \Lambda\right)$ and \hat{u}). Obviously $($ Emod $)\left(U_{j}\right)=S\left(U_{1}, \ldots, U_{j-1}\right)$.
Goal : identify a time T, two constants C_{0} and M_{0} such that
$\left\|U_{j}\right\|_{L^{2}} \leq M_{0}\left(C_{0}\right)^{j} e^{j \gamma(k) t}, t<T$
\Rightarrow the sequence $\sum_{j=1}^{N} \delta^{j} U_{j}$ converges normally in L^{2} for
$t<\frac{1}{\gamma(k)} \ln \frac{1}{C_{0} \delta}$.

Counting terms in the left hand side and estimates :
This result relies on a recurrence, in which one must control the behavior in N of the left hand term of the equation on U_{N}. Time derivative $\partial_{t} \vec{S}: N$
Number of terms (using the quadratic nonlinearity) : N
Behavior of $K_{N}(s): N^{2} e^{N \gamma(k) s}$
$\Rightarrow \int_{0}^{t} \sqrt{K_{N}(s) e^{-\Lambda s}} d s \leq \frac{2 N}{N \gamma(k)-\Lambda} e^{\frac{N \gamma(k)-\Lambda}{2} t}$.
and for $\gamma(k)>\frac{\Lambda}{2}$ and $N \geq 2$ bounded independantly on N.
Rk : not possible to do so when cubic nonlinearity.

7 Nonlinear solution

Consider a solution (T, \vec{u}, q) of the Euler system (2) such that $(T, \vec{u}, q)(0)=(1,0,0)+\delta U_{1}(0)$.
Denote by $(\tilde{T}, \vec{v}, \tilde{q})$ the difference $(T, \vec{u}, q)-U^{N}$.
Moser estimates and usual energy equalities \Rightarrow control on $\rho_{0}^{\frac{1}{2}} \vec{v}, \rho_{0}^{-\frac{1}{2}} T, \rho_{0}^{-\frac{1}{2}} q$
Use the nonlinear equation and write as a source term $k_{0} u=\left(k_{0} \rho_{0}^{-\frac{1}{2}}\right) \rho_{0}^{\frac{1}{2}} u$: one gets estimates on \tilde{T}, \vec{v} and $\rho_{0}^{-1} \tilde{q}$.

End of the proof:
$\vec{u}=\vec{v}+\delta \vec{u}_{1}+\delta^{2} \sum_{j=2}^{N} \delta^{j-2} U^{j}$
First term controlled by ϵ
Last term controlled by $\delta^{2} C$
Leading term is the second one: can be of order $\frac{1}{2}$.

