Non linear instability of the incompressible Euler with gravity equations in the ICF context

Olivier LAFITTE^{†,*}[‡], IHP, February, 22ns, 2008

[†]Université Paris XIII, LAGA, 93430 Villetaneuse Cedex [‡]CEA Saclay, DM2S-DIR 91191 Gif sur Yvette Cedex ^{*}Email: olivier.lafitte@mines.org

1 Physical context

Ablation front in the inertial confinement fusion of Deuterium and Tritium

Study of the propagation of a defect in the target (which is not a perfect sphere) :

we need to obtain the critical density for the beginning of the thermonuclear reaction, and growth of defects can prevent this

Model presented here :

the ablative Rayleigh-Taylor system in a strip with constant gravity and continuous transition between the high density ρ_a and the vacuum $(\rho \to 0)$; A (noncomplete)list of references :

J.W. Strutt (Lord Rayleigh) 1883

G. Taylor 1950

S. Chandrasekhar1961

H.J. Kull and S.I. Anisimov 1986

Takabe et al 1996

V. Goncharov 1998

E. Grenier 2000, L 2000

C. Cherfils, L, P.A. Raviart : 2001

J. GARNIER, C. CHERFILS, P.A. HOLSTEIN 2003

S. Cordier, E. Grenier and Y. Guo 2003

Y. GUO AND H.J. HWANG 2003

B. Helffer and L 2003, 2007

P. CLAVIN AND L. MASSE 2004

B. Desjardins and E. Grenier 2006

R. Poncet 2007

- Mixing of fluids : modeled by a variable density in the medium.
- Presence of gravity.
- Euler equations.
- Energy equation : thermal conduction model.
- Quasi-isobaric model with Fourier law :

 $\operatorname{div}(C_p \rho T \vec{u} + \kappa(T) \nabla T) = 0, \rho T = \operatorname{cst}, \kappa(T) = \kappa_0 T^{\nu}, p = \rho T$

Model system 0 (introducing $Z(\rho) = \frac{\rho_a^{\nu+1}}{(\nu+1)\rho^{\nu+1}}$) :

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \vec{u}) = 0\\ \partial_t(\rho \vec{u}) + \operatorname{div}(\rho \vec{u} \otimes \vec{u} + pId) = \rho \vec{g} \\ \operatorname{div}(\vec{u} + L_0 V_a \nabla Z(\rho)) = 0. \end{cases}$$
(1)

Stationary solution $\rho_0(x) = \rho_a \xi(\frac{x}{L_0}), u_0(x) = -\frac{V_a}{\xi}, p_0$ solution of $(p - \frac{\rho_a V_a^2}{\xi})' = \rho_a g\xi$, where ξ satisfies

$$\dot{\xi} = \xi^{\nu+1}(1-\xi).$$

Concentrate on ρ_0 only. and forget this system and solution.

2 Euler equations with gravity around a general profile

Profile $(\rho_0(x), \vec{0}, p_0(x))$ with $\nabla p_0 = \rho_0 \vec{g}$. Introduce $k_0(x) = \frac{\rho'_0(x)}{\rho_0(x)}$. Euler in 2d : $x \in (-\infty, +\infty), z \in [0, a]$.

System of Euler equations in the unknowns $\vec{u}, T = \frac{\rho_0(x)}{\rho(x,y,t)}, q = \frac{p-p_0(x)}{\rho_0(x)}$: $\begin{cases} \partial_t T + (\vec{u}.\nabla)T = k_0 uT \\ \partial_t \vec{u} + (\vec{u}.\nabla)\vec{u} + (T-1)\vec{g} + \nabla q + k_0(x)q\vec{e_1} = 0 \\ \operatorname{div} \vec{u} = 0 \end{cases}$

(2)

Particular solution $(\vec{0}, 1, 0)$.

Linearized system (operator Emod) :

$$\begin{cases} \partial_t T_1 - k_0 u_1 = 0 \\ \partial_t \vec{u}_1 + T_1 \vec{g} + \nabla q_1 + k_0(x) q_1 \vec{e}_1 = 0 \\ \operatorname{div} \vec{u}_1 = 0 \end{cases}$$
(3)

Linearized system with left hand side

$$\begin{cases} \partial_t T_1 - k_0 u_1 = S_0 \\ \partial_t \vec{u}_1 + T_1 \vec{g} + \nabla q_1 + k_0(x) q_1 \vec{e}_1 = \vec{S} \\ \operatorname{div} \vec{u}_1 = 0 \end{cases}$$
(4)

Rayleigh equation (1) : apply $\partial_t \partial_z^2$ on the equation on u_1 and use $\partial_t T_1$ and $\partial_z^z q_1 = \partial_t \partial_x u_1$:

$$\partial_t^2 \partial_z^2 u_1 + g k_0(x) \partial_z^2 u_1 + \rho_0^{-1} \partial_x (\rho_0 \partial_x \partial_t^2 u_1)$$

= $\partial_t \partial_z^2 S_1 - g \partial^2 z S_0 - \rho_0^{-1} \partial_x (\rho_0 \partial_t \partial_z S_1).$ (5)

Rayleigh equation (2) : seek $u_1(t, x, z) = \hat{u}(x)e^{\gamma t} \cos kz$ in the homogeneous equation :

$$-\hat{u}'' - k_0(x)\hat{u}' + (k^2 + \frac{gk^2}{\gamma^2}k_0(x))\hat{u} = 0$$
(6)

Solution

$$(\hat{u}_1\cos kz, -\hat{u}_1'\frac{\sin kz}{k}, \frac{k_0(x)}{\gamma}\cos kz, -\frac{\gamma}{k^2}\hat{u}_1'\cos kz)e^{\gamma t}.$$

Rayleigh equation (2'):

$$-\frac{d}{dx}(\rho_0\hat{u}) + (k^2\rho_0 + \frac{gk^2}{\gamma^2}\rho_0'(x))\hat{u} = 0$$
(7)

Rayleigh equation (2"):

$$-k^{-2}\frac{d^2}{dx^2}\hat{w} + (1 + \frac{g}{\gamma^2}k_0(x) + \frac{1}{2}k^{-2}(k'_0 + \frac{1}{2}k_0^2))\hat{w} = 0$$
(8)

Assume $k_0 \ge 0$. From (2'), integrating, one deduces $-g > 0 \Rightarrow$ no solution such that γ^2 real positive $- \text{ if } \gamma^2 > (\max k_0)|g| = \Lambda^2$, no solution $- \text{ if } \gamma^2 > |g|k$, no solution the last equality thanks to

$$(1 - \frac{|g|k}{\gamma^2}) \int \rho_0((\hat{u}')^2 + k^2 \hat{u}^2) dx = \frac{|g|k}{\gamma^2} \int \rho_0(\hat{u}' - k\hat{u})^2 dx.$$

3 Semi-classical result

Condition : k_0 has a unique nondegenerate maximum. This condition is satisfied by $k_0(x) = \frac{\xi'(x)}{\xi(x)} = \xi^{\nu}(1-\xi)$. Maximum at $\xi = \frac{\nu}{\nu+1}$. This leads to **Proposition**

There exists a $h_0 > 0$ such that, for all $k \ge \frac{1}{h_0}$, there exists a sequence $\gamma_n(k)$ such that

$$1 - \frac{|g|}{\gamma_n^2(k)} k_0^{max} + \left(\frac{|g|}{2\gamma_n^2(k)} |k_0''|\right)^{\frac{1}{2}} \left(n + \frac{1}{2}\right) = 0(k^{-\frac{3}{2}}).$$

This proves that there exists at least one value of γ and one value of k such that $\gamma \in (\frac{\Lambda}{2}, \Lambda)$.

4 Nonlinear result

Under the assumptions k_0 bounded (as well as all the derivatives) and admits at least a nondegenerate maximum, $k_0 \rho_0^{-\frac{1}{2}}$ bounded, there exists an initial value for (2) close (in a δ sense) to the stationary solution which departs in a time of order $\ln \frac{1}{\delta}$ of a given finite quantity from this solution.

No need of $\rho_0 \ge \rho_{min} > 0$. Need $\rho_0 > 0$ everywhere.

5 The Duhamel principle

Energy equality :

Note that system (3) leads to the equation on the incompressible quantity \vec{u} :

$$\partial_{t^2}^2 \vec{u} + k_0 u_1 \vec{g} + \rho_0^{-1} \partial_x (\rho_0 \partial_t q) = \partial_t \vec{S} - S_0 \vec{g}.$$

from which one deduces

$$\begin{split} &\frac{1}{2} \int (\rho_0(\partial_t \vec{u})^2 + k_0 \rho_0 g u_1^2) dx dz = \frac{1}{2} \int (\rho_0(\partial_t \vec{u}(0))^2 + k_0 \rho_0 g u_1(0)^2) dx dz \\ &= \int_0^t (\int \rho_0(\partial_t \vec{S} - S_0 \vec{g}) \partial_t \vec{u} dx dz) ds \end{split}$$

General result : The solution of $\frac{1}{2} \frac{d}{dt} (\int (\rho_0 (\partial_t \vec{u}_N)^2 - g \frac{\rho'_0}{\rho_0} \rho_0 (u_N)^2) dx dz) = g(t, x, \partial_t \vec{u}_N)$ with initial condition $\partial_t \vec{u}_N (0), \vec{u}_N (0)$, with the assumption $|g(t, x, \partial_t \vec{u}_N)| \leq K(t) ||\rho_0^{\frac{1}{2}} \partial_t \vec{u}_n||_{L^2}$ where K is a positive increasing function for $t \geq 0$ satisfies the inequalities

$$\begin{aligned} ||\rho_0^{\frac{1}{2}} \vec{u}_N||^{\frac{1}{2}} &\leq [C_1 + \int_0^t \sqrt{K(s)e^{-\Lambda s}} ds] e^{\frac{\Lambda}{2}t} \\ ||\rho_0^{\frac{1}{2}} \partial_t \vec{u}_N|| &\leq [C_1 + \int_0^t \sqrt{K(s)e^{-\Lambda s}} ds]^2 e^{\Lambda t} \end{aligned}$$

where C_1 depends on the initial data.

Result for the linear instability with mixing of modes : Let $T_1(t)$, $\vec{u}_1(t)$ be the solution of the linearized Euler system. There exists a constant C_s depending only on the characteristics of the system, that is of k_0 and |g|, such that

$$||\rho_0^{\frac{1}{2}}T_1(t)||_{H^s} + ||\rho_0^{\frac{1}{2}}\vec{u}_1(t)||_{H^s} \le C_s(1+t)^s e^{\Lambda t} (||\rho_0^{\frac{1}{2}}T_1(0)||_{H^s} + ||\rho_0^{\frac{1}{2}}\vec{u}_1(0)||_{H^s})$$

6 Weakly non linear approximate solution of order N

We use the Grenier construction, called the weakly non linear expansion (or solution in the physics solutions) : $(T^N, u^N, v^N, q^N) = (1, 0, 0, 0) + \sum_{j=1}^N \delta^j U_j$ with $U_j(x, z, 0) = 0$ for $j \ge 2$ and U_1 solution of the linearized system (with k, a growth rate $\gamma(k) \in (\frac{\Lambda}{2}, \Lambda)$ and \hat{u}). Obviously $(Emod)(U_j) = S(U_1, ..., U_{j-1})$. Goal : identify a time T, two constants C_0 and M_0 such that $||U_j||_{L^2} \le M_0(C_0)^j e^{j\gamma(k)t}, t < T$ \Rightarrow the sequence $\sum_{j=1}^N \delta^j U_j$ converges normally in L^2 for $t < \frac{1}{\gamma(k)} \ln \frac{1}{C_0 \delta}$. Counting terms in the left hand side and estimates :

This result relies on a recurrence, in which one must control the behavior in N of the left hand term of the equation on U_N . Time derivative $\partial_t \vec{S} : N$

Number of terms (using the **quadratic** nonlinearity) : NBehavior of $K_N(s) : N^2 e^{N\gamma(k)s}$

 $\Rightarrow \int_0^t \sqrt{K_N(s)e^{-\Lambda s}} ds \le \frac{2N}{N\gamma(k)-\Lambda} e^{\frac{N\gamma(k)-\Lambda}{2}t}.$

and for $\gamma(k) > \frac{\Lambda}{2}$ and $N \ge 2$ bounded independently on N. Rk : not possible to do so when **cubic** nonlinearity.

7 Nonlinear solution

Consider a solution (T, \vec{u}, q) of the Euler system (2) such that $(T, \vec{u}, q)(0) = (1, 0, 0) + \delta U_1(0).$ Denote by $(\tilde{T}, \vec{v}, \tilde{q})$ the difference $(T, \vec{u}, q) - U^N$. Moser estimates and usual energy equalities \Rightarrow control on $\rho_0^{\frac{1}{2}} \vec{v}, \rho_0^{-\frac{1}{2}} T, \rho_0^{-\frac{1}{2}} q$ Use the nonlinear equation and write as a source term $k_0 u = (k_0 \rho_0^{-\frac{1}{2}}) \rho_0^{\frac{1}{2}} u$: one gets estimates on \tilde{T}, \vec{v} and $\rho_0^{-1} \tilde{q}$. End of the proof : $\vec{u} = \vec{v} + \delta \vec{u}_1 + \delta^2 \sum_{j=2}^N \delta^{j-2} U^j$ First term controlled by ϵ Last term controlled by $\delta^2 C$ Leading term is the second one : can be of order $\frac{1}{2}$.