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1 Physical context

Ablation front in the inertial confinement fusion of Deuterium and

Tritium

Study of the propagation of a defect in the target (which is not a

perfect sphere) :

we need to obtain the critical density for the beginning of the

thermonuclear reaction, and growth of defects can prevent this

Model presented here :

the ablative Rayleigh-Taylor system in a strip with constant gravity

and continuous transition between the high density ρa and the

vacuum (ρ → 0) ;
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• Mixing of fluids : modeled by a variable density in the medium.

• Presence of gravity.

• Euler equations.

• Energy equation : thermal conduction model.

• Quasi-isobaric model with Fourier law :

div(CpρT~u + κ(T )∇T ) = 0, ρT = cst, κ(T ) = κ0T
ν , p = ρT
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Model system 0 (introducing Z(ρ) =
ρν+1

a

(ν+1)ρν+1 ) :















∂tρ + div(ρ~u) = 0

∂t(ρ~u) + div(ρ~u ⊗ ~u + pId) = ρ~g

div(~u + L0Va∇Z(ρ)) = 0.

(1)

Stationary solution ρ0(x) = ρaξ( x
L0

), u0(x) = −Va

ξ
, p0 solution of

(p −
ρaV 2

a

ξ
)′ = ρagξ, where ξ satisfies

ξ̇ = ξν+1(1 − ξ).

Concentrate on ρ0 only. and forget this system and solution.
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2 Euler equations with gravity around a

general profile

Profile (ρ0(x),~0, p0(x)) with ∇p0 = ρ0~g. Introduce k0(x) =
ρ′

0(x)
ρ0(x) .

Euler in 2d : x ∈ (−∞, +∞), z ∈ [0, a].

System of Euler equations in the unknowns

~u, T = ρ0(x)
ρ(x,y,t) , q = p−p0(x)

ρ0(x) :















∂tT + (~u.∇)T = k0uT

∂t~u + (~u.∇)~u + (T − 1)~g + ∇q + k0(x)q~e1 = 0

div~u = 0

(2)

Particular solution (~0, 1, 0).
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Linearized system (operator Emod) :















∂tT1 − k0u1 = 0

∂t~u1 + T1~g + ∇q1 + k0(x)q1~e1 = 0

div~u1 = 0

(3)

Linearized system with left hand side















∂tT1 − k0u1 = S0

∂t~u1 + T1~g + ∇q1 + k0(x)q1~e1 = ~S

div~u1 = 0

(4)
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Rayleigh equation (1) : apply ∂t∂
2
z on the equation on u1 and use

∂tT1 and ∂z
z q1 = ∂t∂xu1 :

∂2
t ∂2

zu1 + gk0(x)∂2
zu1 + ρ−1

0 ∂x(ρ0∂x∂2
t u1)

= ∂t∂
2
zS1 − g∂2zS0 − ρ−1

0 ∂x(ρ0∂t∂zS1).
(5)

Rayleigh equation (2) : seek u1(t, x, z) = û(x)eγt cos kz in the

homogeneous equation :

−û′′ − k0(x)û′ + (k2 +
gk2

γ2
k0(x))û = 0 (6)

Solution

(û1 cos kz,−û′
1

sin kz

k
,
k0(x)

γ
cos kz,−

γ

k2
û′

1 cos kz)eγt.
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Rayleigh equation (2’) :

−
d

dx
(ρ0û) + (k2ρ0 +

gk2

γ2
ρ′0(x))û = 0 (7)

Rayleigh equation (2”) :

−k−2 d2

dx2
ŵ + (1 +

g

γ2
k0(x) +

1

2
k−2(k′

0 +
1

2
k2
0))ŵ = 0 (8)
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Assume k0 ≥ 0. From (2’), integrating, one deduces

– g > 0 ⇒ no solution such that γ2 real positive

– if γ2 > (maxk0)|g| = Λ2, no solution

– if γ2 > |g|k, no solution

the last equality thanks to

(1 −
|g|k

γ2
)

∫

ρ0((û
′)2 + k2û2)dx =

|g|k

γ2

∫

ρ0(û
′ − kû)2dx.
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3 Semi-classical result

Condition : k0 has a unique nondegenerate maximum.

This condition is satisfied by k0(x) = ξ′(x)
ξ(x) = ξν(1 − ξ). Maximum at

ξ = ν
ν+1 . This leads to

Proposition

There exists a h0 > 0 such that, for all k ≥ 1
h0

, there exists a

sequence γn(k) such that

1 −
|g|

γ2
n(k)

kmax
0 + (

|g|

2γ2
n(k)

|k′′
0 |)

1
2 (n +

1

2
) = 0(k− 3

2 ).

This proves that there exists at least one value of γ and one value of

k such that γ ∈ (Λ
2 , Λ).
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4 Nonlinear result

Under the assumptions k0 bounded (as well as all the derivatives)

and admits at least a nondegenerate maximum, k0ρ
− 1

2
0 bounded,

there exists an initial value for (2) close (in a δ sense) to the

stationary solution which departs in a time of order ln 1
δ

of a given

finite quantity from this solution.

No need of ρ0 ≥ ρmin > 0. Need ρ0 > 0 everywhere.
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5 The Duhamel principle

Energy equality :

Note that system (3) leads to the equation on the incompressible

quantity ~u :

∂2
t2~u + k0u1~g + ρ−1

0 ∂x(ρ0∂tq) = ∂t
~S − S0~g.

from which one deduces

1
2

∫

(ρ0(∂t~u)2 + k0ρ0gu2
1)dxdz = 1

2

∫

(ρ0(∂t~u(0))2 + k0ρ0gu1(0)
2)dxdz

=
∫ t

0
(
∫

ρ0(∂t
~S − S0~g)∂t~udxdz)ds
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General result :

The solution of
1
2

d
dt

(
∫

(ρ0(∂t~uN )2 − g
ρ′

0

ρ0
ρ0(uN )2)dxdz) = g(t, x, ∂t~uN )

with initial condition ∂t~uN (0), ~uN (0), with the assumption

|g(t, x, ∂t~uN )| ≤ K(t)||ρ
1
2
0 ∂t~un||L2

where K is a positive increasing function for t ≥ 0 satisfies the

inequalities

||ρ
1
2
0 ~uN ||

1
2 ≤ [C1 +

∫ t

0

√

K(s)e−Λsds]e
Λ
2 t

||ρ
1
2
0 ∂t~uN || ≤ [C1 +

∫ t

0

√

K(s)e−Λsds]2eΛt

where C1 depends on the initial data.
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Result for the linear instability with mixing of modes :

Let T1(t), ~u1(t) be the solution of the linearized Euler system. There

exists a constant Cs depending only on the characteristics of the

system, that is of k0 and |g|, such that

||ρ
1
2
0 T1(t)||Hs+||ρ

1
2
0 ~u1(t)||Hs ≤ Cs(1+t)seΛt(||ρ

1
2
0 T1(0)||Hs+||ρ

1
2
0 ~u1(0)||Hs).
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6 Weakly non linear approximate

solution of order N

We use the Grenier construction, called the weakly non linear

expansion (or solution in the physics solutions) :

(T N , uN , vN , qN ) = (1, 0, 0, 0) +
∑N

j=1 δjUj

with Uj(x, z, 0) = 0 for j ≥ 2 and U1 solution of the linearized system

(with k, a growth rate γ(k) ∈ (Λ
2 , Λ) and û). Obviously

(Emod)(Uj) = S(U1, ..., Uj−1).

Goal : identify a time T , two constants C0 and M0 such that

||Uj ||L2 ≤ M0(C0)
jejγ(k)t, t < T

⇒ the sequence
∑N

j=1 δjUj converges normally in L2 for

t < 1
γ(k) ln 1

C0δ
.
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Counting terms in the left hand side and estimates :

This result relies on a recurrence, in which one must control the

behavior in N of the left hand term of the equation on UN .

Time derivative ∂t
~S : N

Number of terms (using the quadratic nonlinearity) : N

Behavior of KN (s) : N2eNγ(k)s

⇒
∫ t

0

√

KN (s)e−Λsds ≤ 2N
Nγ(k)−Λe

Nγ(k)−Λ
2 t.

and for γ(k) > Λ
2 and N ≥ 2 bounded independantly on N .

Rk : not possible to do so when cubic nonlinearity.
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7 Nonlinear solution

Consider a solution (T, ~u, q) of the Euler system (2) such that

(T, ~u, q)(0) = (1, 0, 0) + δU1(0).

Denote by (T̃ , ~v, q̃) the difference (T, ~u, q) − UN .

Moser estimates and usual energy equalities ⇒

control on ρ
1
2
0 ~v, ρ

− 1
2

0 T , ρ
− 1

2
0 q

Use the nonlinear equation and write as a source term

k0u = (k0ρ
− 1

2
0 )ρ

1
2
0 u : one gets estimates on T̃ , ~v and ρ−1

0 q̃.
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End of the proof :

~u = ~v + δ~u1 + δ2
∑N

j=2 δj−2U j

First term controlled by ǫ

Last term controlled by δ2C

Leading term is the second one : can be of order 1
2 .
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