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Goals

I. Illustrate through two distinct recent results how rigor-
ous multiscale (in particular short wavelength) aysmptotic
analysis works.

This area has progressed a good deal in the last decades. One
of the main lessons is that multiscale expansions have proven
(so far) better adapted to rigorous analysis than matched
asymptotic expansions.

II. A main reason is that to reduce the residuals (errors
in the differential equation) in multiscale problems to small
enough sizes for estimates requires correctors.

These don’t fit neatly in the matched expansions framework.

III. To share some elementary and very revealing compu-
tations which may be of interest to the broad spectrum of
participants.

I have much enjoyed the experimental side and hope to be
able to put at least a little bit in front of that community
which may be of use to them.

IV. Each of the two problems involves the choice of an ansatz

which is not standard. By describing how one arrives at such
choices, I hope that you may be guided in your own struggles.

2



A Cautionary Example from Geometric Optics.

Science discussion of PDE almost invariable involve simpli-
fying the equations.

The criterion is: Ignore terms which are small compared to

others.

In geometric optics and other multiscale problems, this can

lead to innacurate results.

Consider the wave packets as ε → 0,

∂tu
ǫ + ∂xuǫ + uε = 0 ,

uε
∣∣
t=0

= a(x) cos(x/ε) , a ∈ S(Rd)).

The exact solution is

uε(t, x) = e−t a(x − t) cos((x − t)/ε) .

Both ∂tu
ε and ∂xuε are O(1/ε) while uε = O(1) is negligibly

small in comparison.

Dropping this small term yields,

∂tv
ǫ + ∂xvǫ = 0 , vε

∣∣
t=0

= a(x) cos(x/ε) .

The exact solution of the simplified equation is

vε(t, x) = a(x − t) cos
(
(x − t)/ε

)
,

which misses the exponential decay.

It is a bad approximation.
(
see review of Wave Motion

)
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What Can You Do?

I. Plug your approximate solution into the original equations
to see how big the errors (a.k.a. residuals) are.

You are very likely to be very dissapointed and maybe upset.
This explains why it is rarely done in science and applied
math.

Try to construct (small) correctors to reduce the size of the
residuals. Not usually easy.

In the rigorous results I will describe the hardest part is
typically the construction of correctors.

Often a better ansatz helps.

II. Linearize the equations at the approximate solutions to
detect sensitivity to perturbations.

III. In the rare event that you achieve these two goals you
are not far from proving an error estimate.
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Causality

In the best case, a physical theory in dynamics produces a set
of PDE so that for general initial data there is one and only
one solution satisfying the boundary conditions and that so-
lution depends continuously on the initial data (Hadamard).

Solving physical problems then reduces to finding qualitative
and quantitative properties of families of solutions.

The problems from the experiments presented in this meeting

are beyond that paradigm. I don’t think that there is a single
one for which such an exisitence and uniqueness theorem is
available.

I describe simpler examples where such theorems are avail-
able and where solutions have accurately described singular
structure.

The interest is

i. The language in which the results are described,

ii. The structure of the ansatz used permitting the construc-
tions with small residual.
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Hyperbolic Systems

L(t, x, ∂) = ∂t +
∑

Aj(t, x) ∂j + B(t, x) , ∂j :=
∂

∂xj
,

Aj , B are N×N hermitian symmetric complex matrix valued
functions

∂α
t,x{Aj , B} ∈ L∞(Rt × R

d
x)

Theorem. For any s ∈ N, and any u0 ∈ Hs(Rd) (∂α
x u0 ∈

L2(Rd) for |α| ≤ s) there is a unique u ∈ C(R ; Hs(Rd))
solving

L u = 0, u|t=0 = u0 .

Examples. Linearized inviscid Euler, Maxwell, Linear elas-
ticity, linearized MHD, .....

False if replace Hs by Cs or W s,p with p 6= 2. The Hs

are the natural stability space for multidimensional inviscid
wave propagation.

Theorem. For Lu + G(u) = 0 with G(0) = G′(0) = 0 then
for s > d/2 there is an analogous local in time existence
result.

For quasilinear, s > d/2 + 1.
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Carriers of Singularities

Principal symbol: L1(t, x, τ, ξ) := τI +
∑

Aj(t, x) ξj .

Characteristic variety: Char(L) :=
{

det L1(t, x, τ, ξ) = 0
}

L1(t, x, ∂) ei(τt+xξ) = 0.

A d-dimensional surface Σ ⊂ R
1+d can be the carrier of

singularity if an only if it is characteristic, meaning that
detL1(t, x, ν) = 0 for all conormal ν to Σ.

⇐⇒ the conormal variety N ∗(Σ) ⊂ Char(L).

Examples. i. For utt − c2 uxx they are lines with speed ±c.

ii. For the linearized inviscid Euler equations at a constant
state hyperplanes are characteristic if and only if their nor-
mal velocity is equal to the speed of sound or the velocity of
the background flow.

Can always change local coords respecting t so that Σ =
{xd} = 0.

Assumption. 1. Σ := {xd = 0} is a characteristic hyper-
surface for L.

2. On a conic neighborhood of N ∗Σ, Char(L) is a smooth

embedded hypersurface τ = τ(t, x, ξ) in R
2(1+d)
(t,x,τ,ξ).
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Main Problem. Describe the behavior of solutions uε to

L uε + G(uε) = fε , uε = fε = 0 when t < 0 .

where
fε = F (t, x, xd/ε) ,

with F (t, x, z) smooth, compactly supported in x, with limits

lim
±z→∞

F (t, x, z) = F
±

(t, x)

rapidly achieved.

Define a discontinuous piecewise smooth source,

f(t, x) := F
±

(t, x) , when ± xd > 0 ,

As ε → 0, fε → f .

The limit ε → 0 yields,

LŪ + G(U) = f̄ , U = f̄ = 0 for t < 0 .

∃ ! local in time piecewise smooth solution, U ∈ L∞([0, T1]×

R
d). Denote by U

±
the restriction to ±xd > 0.

U jumps and uε does not ⇒ the convergence is not uniform.

The problem is to find correctors to U to decribe uε with
error uniformly small.
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From the detailed structure of the transition layer in fε,
predict the details of transition layer for uε. By equations
without small structures.

Approach. Step 1. Find an ansatz yielding an approx-

imate solution uε
approx with small residual. In our case

the residual will have conormal (to Σ) derivatives and ε-
derivatives (ε∂t,x)α of size O(εN ) for all N .

Step 2. Prove a stability theorem to conclude that the differ-

ence between the exact and approximate solutions is O(ε∞).

We use known stability results, so the key is constructing
approximate solutions.

!ATTN! The obvious ansatz motivated by the cases of wave
trains and short pulses yields overdetermined equations for
correctors to the leading approximation.

Even in the linear case.

We use a transmission strategy which has been effective in
related problems with layers coming from a vanishing vis-
cosity limit [GMWZ], [Sueur].
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The obvious ansatz fails.

Linear wave packets: eixd/ε
(
a0(t, x) + εa1(t, x) + · · ·

)

Nonlinear wave packets:

εp
(
U0(t, x, xd/ε) + εU1(t, x, xd/ε) + · · ·

)
, Uj(t, x, θ) pdc.

Short pulses f(t, x, xd/ε), f(t, x,±∞) = 0, (f(t, x, z)),

Obvious ansatz for nonlinear short pulses

εp
(
U0(t, x, xd/ε)+εU1(t, x, xd/ε)+· · ·

)
, Uj(t, x,±∞) = 0.

Internal wave f(t, x, xd/ε), f(t, x,±∞) exist.

Obvious ansatz for nonlinear internal waves

εp
(
U0(t, x, xd/ε)+εU1(t, x, xd/ε)+· · ·

)
, Uj(t, x,±∞) exist

Choose p not too small. Plug in. Get equations for the Uj

which look like you can solve them one after the other.

The equations for the corrector U1 are overdetermined for
pulses and internal waves. Have parts determined by

∂g/∂z = f , g(−∞) = a, g(+∞) = b

Necessary condition

b − a =

∫ ∞

−∞

f(z) dz.

Even for linear problems, generically violated.
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Good news.

We find approximate solutions with error O(εN ) for all N .

So we know what the solution looks like.

We know that the preceding ansatz for U1 is incorrect for
pulses and internal waves.

For the case of pulses where the leading term is known ac-
curate [AR], we provide approximations of order ε∞.

These are new even in the linear case.

Next question.

Push the asymptotics to longer times t ∼ 1/ε. We want to
understand the long time behavior of boundary layers and
so far have not got it. Work in progress.
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Assumption 2 and symmetry =⇒ dimkerL1(t, x, τ(t, x, ξ), ξ)
is constant for (t, x, ξ) in a conic neighbhd of ξ = (0, 0, . . . , 1).

In particular dimker Ad(t, x
′, 0) = k is constant on Σ.

By a t, x-dependent orthogonal change of basis can assume
that

Ad(t, x
′, 0) =

(
0k×k 0k×N−k

0N−k×k A(t, x′)

)
,

detA(t, x′) ≥ δ > 0 .

Define the spectral projector

π :=

(
Ik×k 0k×N−k

0N−k×k 0N−k×N−k

)

and the group velocity (:= ray velocity)

v(t, x′) := −∇ξτ(t, x′, xd = 0, τ = 0, ξ′ = 0, ξd = 1)

Since τ vanishes on N ∗Σ and is homogeneous of degree 1, it
follows that v is tangent to Σ := {xd = 0}.
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The differential operator πL(t, x′, 0, ∂)π is essentially a di-
rectional derivative,

π L(t, x′, 0, ∂) π = π
(
∂t +v(t, x′).∂′

x

)
+ lower order terms .

This transport operator is the centerpiece of the description
of wavefront propagation.

The analogous transport operator for internal waves, H, is

H = π
(
∂t + v(t, x′).∇x′ + ∂dτ(t, x′, 0; 0, . . . , 0, 1)z∂z

)

+ lower order terms

If coordinates are chosen so that the hyperplanes xd = const.
are all characteristic then the z∂z term is not present.

In ±z ≥ 0, define F̃±
0 (t, x′, z) with F̃±(t, x′,±∞) = 0 by

F̃±
0 (t, x′, z) := F (t, x′, xd = 0, z) − F

±
(t, x′, xd = 0) .

Denote by Z := (∂t, ∂1, . . . , ∂d−1, φ(xd)∂d) the standard
conormal derivatives tangent to {xd = 0}.
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Main Theorem. Define in {±xd ≥ 0} × {±z ≥ 0} the
principal profile

U±
0 := U

±
(t, x) + Ũ±

0 (t, x′, z) ,

where Ũ±
0

(
t, x′, z) ∈ H∞

(
[0, T2] × R

d−1 × R
)

is determined
as the local solution of,

(I − π)Ũ±
0 = 0 ,

H Ũ±
0 + π

(
G(U

±

0 |xd=0 + Ũ±
0 ) − G(U

±

0 )
)

= πF̃±
0

Ũ±
0

∣∣
t<0

= 0 .

Then uε − U0(t, x, xd/ε) = O(ε) in the sense that if ε is
sufficiently small then uε exists on [0, T2] and ∀β,

∥∥∥
(
Z, ε∂d

)β
(
uε − U0(t, x, xd/ε)

)∥∥∥
L∞([0,T2]×R

d

±
)
= O(ε)

Remark. We construct approximations of accuracy O(ε∞).
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The transmission strategy.

A hint that the moment condition should not be a fatal stum-
bling block comes from the following remark.

In U0(t, x, z) one makes the substitution z = xd/ε. In xd > 0
only the limit at z = ∞ counts and in xd < 0 only the limit
at z = −∞ counts.

One never really needs both z = ±∞ limits.

To capitalize on this, it is natural to split the problem ac-
cording to the two sides ±xd > 0.

The initial value problem for uε is equivalent to the trans-
mission problem

L uε + G(uε) = fε in {xd 6= 0} ,

[
(I − π)uε

]
xd=0

= 0 .

Square brackets indicate the jump.
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The ansatz for uε has profiles for each half space.

A preliminary version is

uε = Uε(t, x, xd/ε)

where, Uε(t, x, z) is compactly supported in x with asymp-
totic expansions

Uε(t, x, z) ∼
∞∑

j=0

εj U±
j (t, x, z) , in {±xd ≥ 0} × {±z ≥ 0}

U±
j (t, x, z) = U

±

j (t, x) + Ũ±
j (t, x, z) ,

with Ũ±
j rapidly decreasing as ±z → ∞.

We do not require that Ũ± → 0 when z → ∓∞. In fact,
Ũ± is not even defined at such points.

At the heart of our analysis is a sort of calculus of such ex-
pansions. The first remark it that, without loss of generality,
the Ũj parts can be taken independent of xd.
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Because of the rapid decrease, Ũj(t, x, xd/ε) is essentially
supported in an ε neighborhood of xd = 0.

Taylor expansion in xd yields

Ũ±
j (t, x′, xd, z) ∼

∞∑

k=0

xk
d

k!
∂k

xd
Ũ±

j (t, x′, 0, z) .

Replacing xd by εz yields an equivalent profile whose z de-
pendent parts depend only on t, x′, z and not on xd.

This leads to the final form for the ansatz

uε = Uε
(
t, x,

xd

ε

)
, Uε(t, x, z) ∼

∑

j≥0

εjU±
j (t, x, z)

U±
j (t, x, z) = U

±

j (t, x) + Ũ±
j (t, x′, z)

Ũ±
j is independent of xd and rapidly decreasing as ±z → ∞.

Proposition 2.1. If a family uε has an asymptotic expan-

sion of this form, then the profiles U
±

j and Ũ±
j are uniquely

determined.
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A different way to generate smoothed sources fε is to take
a standard mollification of the piecewise smooth source f .

Suppose that j(t, x) is smooth compactly supported in t ≥ 0
with

∫
j dt dx = 1.

Define jε(t, x) = ε−d−1j(t/ε, x/ε). Denote by Jε the opera-
tor which is convolution with jε.

Suppose that f is piecewise smooth and compactly sup-
ported on on {t ≤ T} × R

d with jumps on {xd = 0}.

Proposition 2.2. With the hypotheses of the preceding
paragraph, fε := Jεf has an asymptotic expansion of the
above form.

Proposition 2.3. The set of families uε which have expan-
sions of the above form is invariant under smooth change of
coordinates

(
t̃, x̃

)
=

(
t̃(t, x), x̃(t, x)

)
,

(
t, x

)
=

(
t(t̃, x̃), x(t̃, x̃)

)

which map the half spaces ±xd > 0 to the corresponding
halfspaces ±x̃d > 0.
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Proposition 3.1. If uε has an expansion of the above
form and uε satisfies the transmission condition exactly then
Luε + G(uε) has an expansion of the same form

Luε + G(uε) = W ε(t, x, xd/ε) ∼
∞∑

j=−1

εj Wj(t, x, xd/ε)

Wj(t, x, z) = W
±

j (t, x) + W̃±
j (t, x′, z).

Remark. If the transmission condition were not exactly sat-
isfied there would be δ(xd) terms on the left from ∂d applied
to a jump.
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Summary. Once the transmission problem form of the
ansatz and the basic calculus is in hand, the proofs are in-
teresting in detail but go smoothly.

There are no moment conditions, and one constructs an in-
finitely accurate approximate solution,

L(uapprox − fε) = conormal infinitely small.

The stability,

L−1
(
conormal infinitely small

)
= conormal infinitely small,

is known since the 80s.

The key is the ansatz. The key discovery step is the fact
that for the obvious ansatz, U(t, x, xd/ε), the two limits
U(t, x,±∞) never occur for the same point (t, x) with xd 6=
0. There is a natural association of xd > 0 with z > 0 and
xd < 0 with z < 0 which leads to the transmission problem
approach.

This description of layers is a flexible idea which should serve

in other problems. Also the conormal spaces of tangential

regularity.
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Ideas to Remember

For multiscale problems you need correctors to get a small
residual.

Hypersurface singularities and layers are characterictic.

Sobolev spaces with only tangential derivatives give good
spaces to describe layers, and, have good mapping properties
by the solution of differtential equations. Such questions
were much studied in the 80s.

Separate ansatz for the two sides.
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