Singular Solutions

of Kinetic Equations

Existence of singular solutions
of non linear kinetic equations associated with
some singularity phenomena: two examples.

In Collaboration with J. J. L. Velazquez & S. Mischler.



Plan of the talk

. Introduction:

Uehling Uhlenbeck equation & singularity problem.

"he linearized problem.

"he non linear problem.
. Another example:

Smoluchowski equation and gelation.



The dilute gas of Bosons

Dilute gas of boson particles with interacting potential :
vz —x2')=4mahd(zx —2') = gé(xz — 2); a : scattering length.

The particles P: mass m = 1, momentum p, energy |p|*/2.
Only binary elastic collisions i.e. :
Two particles P;, P> collide and give rise to two particles Ps, Py:

p1 + p2 = p3 + pa  conservation of the momentum

p1]? + |p2|? = |p3|* + |pal®* conservation of the energy.



The Uehling Uhlenbeck Equation

f = f(xz,p,t):distribution of particles with momentum p at time ¢ at
point z. Satisfies the UEHLING UHLENBECK (UU) equation:

of
E‘I‘p Vaof

QUf

Qlf) =

q(f) = f3f4 1+ f1) 1+f2> fifo(1 4 f3)(1 + fa)
W (p1,p2,p3,pa) = w(pi1,p2,ps,p4)0(p1+ P2 — P3 — pa) X
0 (|p1)? + |p2|® — [pa* — pal®)

W (p1, P2, P3,p4) q(f)dp2dpsdps



e The function w is determined by solving the quantum mechanical
problem of collision particles:

The interaction of bosons is short ranged:

L. W. Nordheim: Proc. Roy. Soc. London, A 119 (1928).

E. A. Uehling & G. E. Uhlenbeck: Physical Review 43 (1933).

E. Zaremba, T. Nikuni, A. Griffin J. Low Temp. Phys. 116 (1999).
R. Baier, T. Stockkamp: arXiv:hep-ph/0412310, (Jan. 2005).



f(x,p,t) = f(pvt)
e [ he equation becomes: % = Q(f)

By the symetries of W we have :

e Conservation of particles number, momentum and energy:

d d d

— dp =0, — dp =0, — >dp = 0.
- Rsf(p) p=0, - Rgf(p)p p=0, - . f()|p|“dp =0

(at least formally...)



The entropy is defined as

HN® = | h(f(t.p)dp
R3
h(f) =1+ f) In(1+ f) — f In(f)
It is increasing along the trajectories of the solutions:

0H(f)
ot

ol RCLIOL

() >0,

Moreover:



The maxima with zero momentum (P = 0) are:

1
Fﬁ,,u(p) — eﬁ|p|2_,u 1

3= (kg T)_l, (T : temperature of the gas.)

Given 3 (or T)

1 1
eBlpl2—pn — 1 = eBlpl2 — 1’

>0, p<0

for all u < 0.

For a fixed temperature 1': maximal particle number Nr.

Or, for a fixed particle number N: a MINIMAL temperature Ty .
If T'<T'n7?



The answer was given by Bose & Einstein in 1924 /1925:

1
F,B,,u(p) — 65|p|2—ﬂ . 17 for all M S 07 6 > 0
1
Gg.p(p) = e + pdg, forall >0, p>0.

A consequence of the fact: Let a € R? and a € R be fixed and
(On)neN;  ©n — 4. Then, for any f € L:

H(f +¢n) — H(f) and N(f +¢n) — a+ N(f).

n—aoeo n—aoo



Proof. SUPPOSE, for the sake of simplicity that ¢, = 0 if
p—al >2/n. Then

H( o= [ h0.p)dp

+/ h((f(p,t) + on(p), p) dp.
lp—a|<2/n

Using |h(z)| < ¢y/z we obtain:

9 1/2
/pa<\2h/(n( )+ en@)ldp < e (/pa[%fQ(/%t)Jﬂpn(p)]dp)

—— 0 as n — +o0.
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REMARK. The entropy estimate H(f) < oo does not give
any size estimate on f since it DOES NOT PREVENTS THE

CONCENTRATION of f.

Consider now the Cauchy problem:

of
=)

f(,0) = fo(p),

fo : with number of particles N, energy E
and T' < Ty
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It fo(p) = fo(|p|), X. Lu shows in JSP 2004

e Existence of a GLOBAL solution in the WEAK sense (measures)

e Convergence in the WEAK sense to the corresponding equlibrium
(with particle number N and energy F)

Since T' < T’y this equilibrium is singular (even if fy is regular):

Finite or infinite time formation of singularity?
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Bose Einstein condensation

When the temperature is too low, or the initial particle number too
large, the gas of bosons undergoes a phase transition: a condensate
Is formed _

A macroscopic part of the population of particles occupies the lowest
possible energy level of the system (the fundamental state). This
is the Bose Einstein CONDENSATE. After the condensation the
gas-+condensate is described by a system of two coupled equations

13



tsotropic case: RN

Simplification: Q(f) = // w(er, €9, €3, 4) desdey
19(61)

q(f) = f3fa(l+ f1))(1+ f2) = fufo(1+ f3)(1 + fa)
min{ /€1, /€2, /€3, \/€4}
NG

D(e1) = {(e3,64)):€3+¢e4 >€1}, wheree; = |p;

| 2

€9 = E3TE4— €1
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Following:

D. V. Semikov & I. I. Tkachev (Phys. Rev. Lett. 1995)
R. Lacaze, P. Lallemand, Y. Pomeau & S. Rica (Phys. D 2001).

Near the time singularity, 7' > 0 and the origin e =0, f >> 1.

of
ot

Q(f) = //D(q) w(er,€2,€3,€4) desdey
q(f) = [fafalfi+ f2) — fifo(fs + fa)

(mUU)

Q(f) (modified UU equation)

15



There i1s a solution of mUU of the form:

E

fe,t) = A~Y2HT —t)~*® (

dx

(T - t)A>

~ (Hxi) O = Q(d), and v = a/A.

where, ® is bounded, and satisfies

d(r) ~ — as z — Ho0.
ajl/

Then, foralle >0 : f(e,t) ~ A~Y2(T —¢)~@ (

= A"1/2e7V

E

(T —t

, ast — 1T,

<)
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Cv)
2(v — 1)

56_3’/—'_2 4+ O(ZU_5V+4)

with C (7/6) = C (3/2) = 0.
Therefore: v #7/6, v # 3/2.

e Near the origin:
d(z)=aw)z /4., asz—0
For the correct value of v : a(v) = 0.

Numerical value: v =1,234--- € (7/6,3/2)
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It is easy to check that: (1) = g(e™!) =0
and therefore:
Q(1) = Q(e') =0.

1
eBlpl?—u — 1

They come from the regular solutions of Q(f) = 0:

Non-Equilibrium steady solutions:
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Another solution obtained by V. E. Zakharov et. al:

Q=% = 0.
e Although g(e~7/6) £ 0.

e |n the original variables p € R?:

for some constantC' > 0 : / Alp|~ ") dp = —C forall K >0
[p|<K

So we have actually: [KOI{lia o -
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These two sets of results by:

e R. Lacaze, P. Lallemand, Y. Pomeau & S. Rica:
Near the origin: f(e,t) ~a(v)g(t)e /54 ..., ase — 0.
e V. E, Zakharov et. al: Q(¢~7/6) = 0.

7/6

seem to indicate a particular role of the power e~/° as ¢ ~ 0.

Our main result (very partial): That behaviour is stable, at least
locally in time.
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B
Suppose that: [foe) —Ae™ 78 < 7oy 0=<e<l,
7/6—
T B
‘fé(@"‘gAg B8 < 13765 0<e<l1
e—De
fo(é) < B 87/6 , k > 1

for A, B, C,J positive constants.

Then there are: a unique solution of UU, f € CY°((0,T) x (0, +0c0)), a function
A(t) € C[0,T] N CY0,T), and constants L > 0, T' > 0 such that:

e—Ds
£7/6
fle,t) = A&) e TS| < Le™ /64012 2 <1, ¢t (0,T),

At)| <L, forte (0,T).

0< f(e,t) <L if e>0,te(0,T),
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Due to the precise behaviour f(e,t) ~ e~ 7/6 at e =0,

this solution satisfies:

d

4 ( L VEIED de> — —ON(t) + O(KV/1),

as K — 0:

—> no conservation of the number of particles.
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Plan of the proof

e Linearisation of the “modified” U-U equation:

of

=)

around €~ 7/6. The fundamental solution. The linear semigroup.
(Largely based on Zakharov work. Our main contribution: precise
size estimates.)

e T[reat the Ueling Uhlenbeck equation as a nonlinear perturbation.
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The work by Zakharov et al.

e Systematic method for the deduction, under suitable hypothesis,
of kinetic equations of this type from system of PDE's with a
Hamiltonian formulation.

e Surface water waves, Langmuir waves etc...

e Sistematic method to find homogeneous non equilibrium steady
states.

e General method to study the linear stability of these steady states.

A. M. Balk, V. E. Zakharov: A. M. S. Translations Series 2,
Vol. 182, 1998, 1-81.
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Linearisation

We linearise around f(e) = e~ 7/6: f(t,e) =77/ + F(t,¢)
i ( ~7/6 F) ( —7/6) _|_Z(€—7/67F) - (8—7/6’F)
5(5_7/6, F') : linear with respect to F. Consider the equation:

5’F
// —7/6 + F) (51762753754) d€3d54
D(e1)

and obtain the following equation for F: (a and K explicit)

%—fzﬁ(F)z—i (6)+—/OOOK(E) F(r) dr
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The fundamental solution of L

Theorem. For all g > 0, there exists a unique solution:

1 t ¢
F(t,g,so) — 8_()F (81/37807 1)
0

such that:
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For € € (0,2) the function F(t,e,1) can be written as:

where o € C|0, 4-00) satisfies:

] A+ O@E) ast— 0T,
o(t) = O(t=Bv0=5/2)) a5 t — 400

A is an explicit numerical constant, € > 0 is an arbitrarily small
number, vy ~ 1.84020... > 11/6 .
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R1 and Ro satisfy:

Ri(t,e) =0 for e —1| >

‘Rl(ta 5)‘ <C

/

6—(@—6)75

e — 1]5/6

Rz(t, 5) S $

cC [t
$5/2+e \ ¢

\

cC [t
t3vo—e \ ¢

)
)

b

b

?

DN | —

1
for |e — 1] < =
or |e ]_2,

for 0 <t<1

for t > 1.
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b is an arbitrary number in (1,7/6). On the other hand, for ¢ > 2,

F(t,e, 1) < <

/

11

t3 6
¢ () for 0 <t<1

t%-l-s £
11

E

3\ 6
¢ <t> for t > 1.
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Remarks.

e The initial Dirac measure at € = g PERSISTS for all time ¢ > 0
and is NOT REGULARISED: hyperbolic behaviour.

e The total mass of the Dirac measure DECAYS exponentially fast
in time: it is "ASYMPTOTICALLY" regularised.

e The behaviour e=7/6 as ¢ — 0 PERSISTS for all time.
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a 1 [ r
Fi(t,e) = —EF(t,s) + @/0 K (—) F(t,r)dr

F(0,e) =6(e — 1)

PRSI « < O ((0,1)U (1, +0)) satifis:

K(r)~art? as r—0, K()~ar 7% as r— 40
K(r)~a3(1—7)"5+a,+0(1-r)% as r—1-,
K(r) ~as(r —1)7% 4 a6 + O((1 — )% as r— 17,
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Change of variables: ¢ = €,
F(t,e) =G(tw), K(r/e)=K(e ") ="Kz —y)

with C(z) = e " K (e~ ). We arrive to the Cauchy problem:

)

;.
S 0(tx) = e ( ag(t,a:)+/

| G(0,2) = 8(x), o

In what space do we look for a solution G 7

Kz —y)G(t,y) dy) ,

/N
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Due to the behaviour of K at 0 and +00, THE BEHAVIOUR of K is

K(z)| ~ Cies for z <0

3

K(x)| ~ Cse 2% for x>0.

Therefore, IF WE WANT
/ K(r —y)G(t,y)dy < +oo

WE NEED

G(t,x)| < Ce ™ for z <0, G(t,x)| < Ce™™* for x>0

for some m > —1/6 and M < 3/2. Now we BOOTSTRAP for
x > 0:
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N

< / ~$e—y)=Mygy | / o-m(e—2) ],

< [ (e_%x + e_mx) .

We deduce that, for £ > 0 the right hand term of the equation satisfies:

—x/3 _ag

€

x +/ K(z —y)G(y) dy‘ <C (6_<m+%)"’3 + 6_%‘”) ,

[ Ke-pswal < | / Dyl +] [ K6 - 2)d

G R e R BN T his does not work for x < 0.
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LAPLACE transform in ¢ and FOURIER transform in x: G(z,§).

If G(z) < C’e_%m for x > 0, then considering ¢ = u+1iv, u € R,
v € R we have:

\e—iff’fg(x)\ < Ce8)T for 2 > 0
and, if G(z) < Ce ™M for x < 0:
|e_i£5”g(:z:)| < Celv =Mz for z < 0.

Therefore: G(z,-) is ANALYTIC in the strip M < v < 11/6
(M < 3/2).
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) 7 1
2G(2,8) = G(z,§ — g)‘b(f - g) + N (1)

where (&) = —a+ K(€) and K is the Fourier transform of K. The
problem is then transformed in the following:

For any z € C, Rez > 0, find a function G(z,-) analytic in the strip
S={& E=u+iv, 4/3 <v < 11/6, u € R} satisfying (1) on S.

36



We introduce the NEW SET OF VARIABLES:




Then g SOLVES:
1
zg(z,x —1i0) = p(z) g(z, o +1i0) + —— for all z € RT

V2T

g Is analytic and bounded in D,

where, .
D={CeT(C); ¢=re"? r>0,0<86<2r},
and, for any z € R:

g(z,z +10) = liII(l) g(z,ze®), g(z,x —i0) = lim g(z, ze'(?™=9))

e—0
o(r) = lim (xe™).
e—0
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The key of the argument is:

e To write the function ¢©(()/z for ( € RT as

o) M(z¢+i0)
z M(z,¢ —10)’

for ¢ €RT,

where M (z,&) is an analytic function of £ on C\ RT.

e To write the function M(z,z —i0) for x € RT as

M (z,x —i0)
V2T 2

where W (z, &) is an analytic function of £ on C\ R,

= W(z,z +i0) — W(z,z —i0) for x € R,

39



e [his makes that the equation on g may be written:
M(z,x —i0)g(z,x —i0) + W(z,z —i0) =
M(z,x +10)g(z,z +i0) + W(z,z +140), forall z € RT
with M (z,-)g(z,-) + W(z,-) analytic in C\ RT.
e The function C'(z, ) defined by means of:

C(z,)=M(z,)g(z,-) + W(z,-)

is then analytic in ORI

e Finally to identify this function C(z,-) showing that it is analytic
also at £ = 0 and then in all C.

40



If the following integral is convergent:

H(z6) = 271m /OOO tn (SO(ZA)> )\d_)\g'

then, the Plemej Sojoltski formulas give, for ( € R*:

H(C+i0) = =In (SO(C))JFLPU ( A) d\

2 2 2T A—C(
> d\
H(C —i0) = —%m (90(;)) +2impv ( )> .

41



H(z,(+10) :
Therefore : p(N) _ = M(z, ¢ + ZO)
z et (z,6—i0) — M(z, — i0)

M(z,{) ANALYTIC in ¢ € C\ RT: follows from Integrability
properties of In(y) (To check later)

Moreover, if M has suitable bounds as + — 0 and * — +o00, we
may define:

1 [ M(z,A—i0) dA
W) =5 [ S

and, by the same argument:
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M (z,x —10)
V2T 2z

The function

=Wi(z,x +1i0) — W(z,x —i0), forany x>0

C(z,)=M(z,)g(z,-) + W(z,-)

is then analytic in C\ {0}. The size estimates on W and M allow
to show:

C(2,Q)| < [¢|7* as || —0
C(2,Q) < ¢ as [¢| — +o0

for some p > 0 and 0 > 0.
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C'(z,() is then analytic also at 0 and does not depend on ( i. e.
Vze C\R™: (C(z¢) =C(z2),

whence, IF A SOLUTION g EXISTS:

C(z) — W(z,
g9(2,¢) = (23\4(,2 C()Z O,
1 [ M(z,A—i0)d\
where, C(z) :%EI(I)W(Z’C) :%/O (# ; i0) :

Due to the behaviour of In(¢(()) and M (z,() as Re( — +o0, the
INTEGRALS which define H and M above do NOT CONVERGE.
They have to be slightly MODIFIED.
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Theorem. For any z € C\ R™, there exists a unique bounded
solution g, given by:

1 ¢ [ M(z,A—i0) dX
2miz Jo  M(2,0) A(A—()

9(z,¢) =

where,

e () (- t) o]

1
Ao € C\ RT js arbitrary and a(z) = 5 In <_f)_
) a
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Example of technical lemma

Lemma 1. Suppose that, for some ¢ > 0 f is analytic in the cone
C(2e0) ={C€C; (= Cle®, 6 (—2e0,2¢0) }-

Let us also assume that:

10
/ |f(re )| dr < +o0, for any 0 € (—2¢y, 2¢9)
0

1+ 72
1i AN =L li N
oim SN =L, lm o f(A) =L

') =o(1/)), asA— 0, A — +oo, A € C(2).
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Then, for any \g € C\ C(2¢q), the function

F<<>=2im/000f@> (A%C—A_lAO) ax

Is analytic in the domain

D(&“o) — {C - «S; C: \C|ei9, 0 € (-80,27‘(‘ —|—€0)}

Moreover:

F(Q)= —~Aln¢ +o(nl¢)), as¢—0, ¢ e D)

271

F(Q)= -2 In¢ +o(ln|¢]), as¢— +oo, ¢ € D(co).

271
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Theorem. For any z € C\ R™, there exists a unique bounded
solution GG, given by:

where,

__ i 6ra(z) (y—§&) V(y) dy
G2,8) = 2T 2 Imszg V() (eﬁﬂ(y—ﬁ) _ 1)

V(€) = exp[—3i /zmy:g n (q)(y:;io)) y

1 1
ety ( = — ) dy].
e0my _ 67§ ebTYy _ 6701

and § € C is arbitrary such that Smd # 4i/3 + 2k .

e The convergence of the integrals rely on the behaviour both local
and as e A — Fo00 of the function In(®P).
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The function ®(§) := —a + l%(f):

- +Z 1—6254—123 +Z 1—32§+3])Jr

+Z 3+22£+23 +Z 10+3@£+6j)

J=

J=0

A;i(j), explicit.

B -G i (0r2)i —Gd)i —(G+2)i =01,

and: (I)(f) ~ —a + 51/6 -+ ?2

as |&| — 400 and Smé& bounded.
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The zeros of .

The only exact results on the zeros of ® are:

e The function ® has a simple zero at the point £ = 7¢/6. It
corresponds to the fact that £~ 7/6 is a solution of the linearised
equation.

e Moreover, it also has a simple zero at £ = 13¢/6. This corresponds
to the fact that £=! is also a solution of the linearised equation.

e NO OTHER ZERO of ® is known in general. But OTHER ZEROS
of ® determine the behaviour of the term o (¢) and the lower order
terms R1 and R- in the expansion of the fundamental solution.
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e The point £ = 7i/6 is the only zero of ® in the strip Zmé& €

(—1/6,5/3).

e The zeros of ® nearest to 13i/6 are two simple zeros at & =
+ug 4 2vg with: ug = 0.331..., vg = 1.84020...
These are the only zeros of @ in the strip Zmé& € (—1/3,5/2).

e The graph of the function ®(£) does not make any complete turn
around the origin when & moves along any curve connecting the two
extremes of the strip 7/6 < ISm¢& < 3/2..

We draw part of the curves: ®(£) E=b+1ir, —o0 <r < +00.
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-0.33+1.8xi Q)

Im £=5/3

o.33+1.8xi

@ ©Poles

o Zeros

Im £=4/3

-0.4

0.2

Figure 1: Some zeros and poles of ®
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T20

T=20

T—-40

Figure 2: b=-1/4
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-10

—

Figure 3: b =1
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Figure 4: b=4/3
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-10

Figure 5: b=15/3
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-10

Figure 6: b =21/12
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-10

Figure 7: b =23/12
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6e-05+
4e-05

2e-051

—8e—05 -6e-05 -4e-05 =26-05 o

-6e-05

-2e-05 1

-4e-05 1

2e-05

4e-05

6e-05

8e-05

Figure 8: b = 1.840205625
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Figure 9: b = 1.8402088125 60



Glz6) = S [ goma) -6 YW) dy

272 Jrm y=3 V(E) (ebm(v—8) — 1)
. O(y + zO))
V(E) = exp|—3 In
(§) = exp| Z[Imyzg ( — X

1 1
ety < = — ) dy).
ebmy _ o67E Oy _ b7t

In the (¢, ) variables: invert Fourier and Laplace transform:
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1 c+o00 1 , oo+b1 '
)= e[, e e
70 C

—00 1 —oo-+b1

for some suitable choosed b € R and ¢ € R.

dz,

In particular we have to choose Smb € (7/6,11/6) to have good

decay estimates on e'*¢ G(z, &) along the integration path.
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Using the Theorem of residues: deform the integration contour
downward until the first pole of G(z, &) is reached.
This pole is £ = 7:/6. It follows:

FHG)(z,2) = e 6 et Gz, &)dE

\/%/Imf b
h(z) = V2miRes(G(z,-),E=Ti/6).

The inverse Laplace transform gives then:

g(t,z) ~o(t)e ™0  as x — —o0.
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More Remarks.

Everything is encoded in the function ®(&):

e The uniqueness of the solution: from the argument property of ®
along horizantal lines contained in the strip 7/6 < Smé& < 3/2.

e The persistency of the Dirac measure: comes from the fact that
P(&) — a as || — F+o0.

e The decay of the total mass of the Dirac measure: a > 0.

e The asymptotic behavior as £ — F00: come from the zeros and
poles of ®.
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