
Singular Solutions

of Kinetic Equations

Existence of singular solutions

of non linear kinetic equations associated with

some singularity phenomena: two examples.
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1



Plan of the talk

1. Introduction:

Uehling Uhlenbeck equation & singularity problem.

2. The linearized problem.

3. The non linear problem.

4. Another example:

Smoluchowski equation and gelation.
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The dilute gas of Bosons

Dilute gas of boson particles with interacting potential :

v(x− x′) = 4 π a ~ δ(x− x′) ≡ gδ(x− x′); a : scattering length.

The particles P : mass m = 1, momentum p, energy |p|2/2.

Only binary elastic collisions i.e. :

Two particles P1, P2 collide and give rise to two particles P3, P4:

p1 + p2 = p3 + p4 conservation of the momentum

|p1|2 + |p2|2 = |p3|2 + |p4|2 conservation of the energy.
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The Uehling Uhlenbeck Equation

f ≡ f(x, p, t):distribution of particles with momentum p at time t at

point x. Satisfies the UEHLING UHLENBECK (UU) equation:

∂f

∂t
+ p · ∇x f = Q(f)

Q(f) =
2 g2

(2 π)5

∫ ∫ ∫
R9

W (p1, p2, p3, p4) q(f)dp2dp3dp4

q (f) = f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)

W (p1, p2, p3, p4) = ω(p1, p2, p3, p4) δ(p1 + p2 − p3 − p4)×
×δ
(
|p1|2 + |p2|2 − |p3|2 − |p4|2

)
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• The function ω is determined by solving the quantum mechanical

problem of collision particles:

The interaction of bosons is short ranged: ω = Constant.

L. W. Nordheim: Proc. Roy. Soc. London, A 119 (1928).

E. A. Uehling & G. E. Uhlenbeck: Physical Review 43 (1933).

E. Zaremba, T. Nikuni, A. Griffin J. Low Temp. Phys. 116 (1999).

R. Baier, T. Stockkamp: arXiv:hep-ph/0412310, (Jan. 2005).
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Homogeneous gas

f(x, p, t) ≡ f(p, t)

•The equation becomes:
∂f

∂t
= Q(f)

By the symetries of W we have :

• Conservation of particles number, momentum and energy:

d

dt

∫
R3

f(p) dp = 0,
d

dt

∫
R3

f(p) p dp = 0,
d

dt

∫
R3

f(p) |p|2 dp = 0.

(at least formally...)
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The entropy

The entropy is defined as

H(f)(t) =
∫

R3
h(f(t, p)) dp

h(f) = (1 + f) ln(1 + f)− f ln(f)

It is increasing along the trajectories of the solutions:

∂H(f)
∂t

=
∫

R3
Q(f) h′(f) dp

≡ 1
4
D(f) ≥ 0,

Moreover:
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Equilibria as Maxima of the entropy.

The maxima with zero momentum (P = 0) are:

Fβ,µ(p) =
1

eβ|p|2−µ − 1
β > 0, µ ≤ 0

β = (kB T )−1, (T : temperature of the gas.)

Remark. Given β (or T ):

1
eβ|p|2−µ − 1

≤ 1
eβ|p|2 − 1

, for all µ < 0.

For a fixed temperature T : maximal particle number NT .

Or, for a fixed particle number N : a MINIMAL temperature TN .

If T < TN?
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Singular Equilibria

The answer was given by Bose & Einstein in 1924/1925:

Fβ,µ(p) =
1

eβ|p|2−µ − 1
, for all µ ≤ 0, β > 0

Gβ,ρ(p) =
1

eβ|p|2 − 1
+ ρ δ0, for all β > 0, ρ > 0.

A consequence of the fact: Let a ∈ R3 and α ∈ R be fixed and

(ϕn)n∈N; ϕn → α δa. Then, for any f ∈ L1
2:

H(f + ϕn) −→
n→∞

H(f) and N(f + ϕn) −→
n→∞

α + N(f).
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Proof. SUPPOSE, for the sake of simplicity that ϕn ≡ 0 if

|p− a| ≥ 2/n. Then

H(f + ϕn) =
∫
|p−a|≥2/n

h(f(p, t), p) dp

+
∫
|p−a|≤2/n

h((f(p, t) + ϕn(p), p) dp.

Using |h(z)| ≤ c
√

z we obtain:

∫
|p−a|≤2/n

|h(f(p, t) + ϕn(p))|dp ≤ c
2√
n3

(∫
|p−a|≤2/n

[f(p, t) + ϕn(p)]dp

)1/2

−→ 0 as n → +∞.
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REMARK. The entropy estimate H(f) < ∞ does not give

any size estimate on f since it DOES NOT PREVENTS THE

CONCENTRATION of f .

Consider now the Cauchy problem:

∂f

∂t
= Q(f)

f(p, 0) = f0(p),

f0 : with number of particles N, energy E

and T < TN
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If f0(p) = f0(|p|), X. Lu shows in JSP 2004:

• Existence of a GLOBAL solution in the WEAK sense (measures)

• Convergence in the WEAK sense to the corresponding equlibrium

(with particle number N and energy E)

Since T < TN this equilibrium is singular (even if f0 is regular):

Finite or infinite time formation of singularity?
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Bose Einstein condensation

When the temperature is too low, or the initial particle number too

large, the gas of bosons undergoes a phase transition: a condensate

is formed in finite time .

A macroscopic part of the population of particles occupies the lowest

possible energy level of the system (the fundamental state). This

is the Bose Einstein CONDENSATE. After the condensation the

gas+condensate is described by a system of two coupled equations

· · ·
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Isotropic case: f ≡ f(|p|, t)

Simplification: Q(f) =
1
8

∫ ∫
D(ε1)

q(f)w̃(ε1, ε2, ε3, ε4) dε3dε4

q (f) = f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)

w̃(ε1, ε2, ε3, ε4) =
min{√ε1,

√
ε2,
√

ε3,
√

ε4}√
ε1

D (ε1) = {(ε3, ε4)) : ε3 + ε4 ≥ ε1} , where εi = |pi|2

ε2 = ε3 + ε4 − ε1
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Singularity Formation. A description.

Following:

D. V. Semikov & I. I. Tkachev (Phys. Rev. Lett. 1995)

R. Lacaze, P. Lallemand, Y. Pomeau & S. Rica (Phys. D 2001).

Near the time singularity, T > 0 and the origin ε = 0, f >> 1.

(mUU)
∂f

∂t
= Q(f) ∼ Q(f) (modified UU equation)

Q(f) =
1
8

∫ ∫
D(ε1)̃

q(f)w̃(ε1, ε2, ε3, ε4) dε3dε4

q̃(f) = f3f4(f1 + f2)− f1f2(f3 + f4)
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There is a solution of mUU of the form:

f(ε, t) = A−1/2(T − t)−αΦ
(

ε

(T − t)A

)
−
(

ν + x
d

dx

)
Φ = Q(Φ), and ν = α/A.

where, Φ is bounded, and satisfies

Φ(x) ∼ 1
xν

as x → +∞.

Then, for all ε > 0 : f(ε, t) ∼ A−1/2(T − t)−α

(
ε

(T − t)A

)−ν

≡ A−1/2 ε−ν, as t → T−.
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• as x → +∞:

Φ(x) ∼ x−ν − C(ν)
2(ν − 1)

x−3ν+2 +O(x−5ν+4)

with C (7/6) = C (3/2) = 0.

Therefore: ν 6= 7/6, ν 6= 3/2.

• Near the origin:

Φ(x) = a(ν) x−7/6 + · · · , as x → 0

For the correct value of ν : a(ν) = 0.

Numerical value: ν = 1, 234 · · · ∈ (7/6, 3/2)
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Equilibrium steady solutions of mUU

It is easy to check that: q̃(1) = q̃(ε−1) = 0

and therefore:

Q(1) = Q(ε−1) = 0.

They come from the regular solutions of Q(f) = 0:
1

eβ|p|2−µ − 1

Non-Equilibrium steady solutions:
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Another solution obtained by V. E. Zakharov et. al:

Q(ε−7/6) = 0.

• Although q̃(ε−7/6) 6= 0.

• In the original variables p ∈ R3:

for some constant C > 0 :
∫
|p|≤K

Q(|p|−7/3) dp = −C for all K > 0

So we have actually: Q(|p|−7/3) = −Cδp=0.
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These two sets of results by:

• R. Lacaze, P. Lallemand, Y. Pomeau & S. Rica:

Near the origin: f(ε, t) ∼ a(ν) g(t) ε−7/6 + · · · , as ε → 0.

• V. E, Zakharov et. al: Q(ε−7/6) = 0.

seem to indicate a particular role of the power ε−7/6 as ε ∼ 0.

Our main result (very partial): That behaviour is stable, at least
locally in time.
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Main Theorem
Suppose that: |f0(ε)−A ε−7/6| ≤ B

ε7/6−δ
, 0 ≤ ε ≤ 1,

|f ′0(ε) +
7
6

A ε−13/6| ≤ B

ε13/6−δ
, 0 ≤ ε ≤ 1

f0(ε) ≤ B
e−Dε

ε7/6
, k ≥ 1

for A,B, C, δ positive constants.

Then there are: a unique solution of UU, f ∈ C1,0((0, T )× (0,+∞)), a function
λ(t) ∈ C[0, T ] ∩C1(0, T ), and constants L > 0, T > 0 such that:

0 ≤ f(ε, t) ≤ L
e−Dε

ε7/6
, if ε > 0, t ∈ (0, T ),

|f(ε, t)− λ(t) ε−7/6| ≤ Lε−7/6+δ/2, ε ≤ 1, t ∈ (0, T ),

|λ(t)| ≤ L, for t ∈ (0, T ).
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Due to the precise behaviour f(ε, t) ∼ ε−7/6 at ε = 0,

this solution satisfies:

d

dt

(∫
|ε|≤K

√
ε f(ε, t) dε

)
= −Cλ3(t) +O(K1/10),

as K → 0:

=⇒ no conservation of the number of particles.
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Plan of the proof

• Linearisation of the “modified” U-U equation:

∂f

∂t
= Q(f)

around ε−7/6. The fundamental solution. The linear semigroup.

(Largely based on Zakharov work. Our main contribution: precise

size estimates.)

• Treat the Ueling Uhlenbeck equation as a nonlinear perturbation.
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The work by Zakharov et al.

• Systematic method for the deduction, under suitable hypothesis,

of kinetic equations of this type from system of PDE’s with a

Hamiltonian formulation.

• Surface water waves, Langmuir waves etc...

• Sistematic method to find homogeneous non equilibrium steady

states.

• General method to study the linear stability of these steady states.

A. M. Balk, V. E. Zakharov: A. M. S. Translations Series 2,
Vol. 182, 1998, 1-81.
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Linearisation

We linearise around f(ε) = ε−7/6 : f(t, ε) = ε−7/6 + F (t, ε)

q̃
(
ε−7/6 + F

)
= q̃

(
ε−7/6

)
+ ˜̀(ε−7/6, F

)
+ ñ

(
ε−7/6, F

)
˜̀(ε−7/6, F

)
: linear with respect to F . Consider the equation:

∂F

∂t
=

1
8

∫ ∫
D(ε1)

˜̀(ε−7/6 + F
)

w̃(ε1, ε2, ε3, ε4) dε3dε4

and obtain the following equation for F : (a and K explicit)

∂F

∂t
= L(F ) ≡ − a

ε1/3
F (ε) +

1
ε4/3

∫ ∞

0

K
(r

ε

)
F (r) dr
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The fundamental solution of L

Ft(t, ε, ε0) = − a

ε1/3
F (t, ε, ε0) +

1
ε4/3

∫ ∞

0

K
(r

ε

)
F (t, r, ε0) dr

F (0, ε, ε0) = δ(ε− ε0).

Theorem. For all ε0 > 0, there exists a unique solution:

F (t, ε, ε0) =
1
ε0

F

(
t

ε
1/3
0

,
ε

ε0
, 1

)

such that:
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For ε ∈ (0, 2) the function F (t, ε, 1) can be written as:

F (t, ε, 1) = e−a tδ(ε− 1) + σ(t) ε−7/6 +R1(t, ε) +R2(t, ε),

where σ ∈ C[0,+∞) satisfies:

σ(t) =

{
A t4 +O(t4+ε) as t → 0+,

O(t−(3v0−5/2)) as t → +∞

A is an explicit numerical constant, ε > 0 is an arbitrarily small

number, v0 ∼ 1.84020... > 11/6 .
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R1 and R2 satisfy:

R1(t, ε) ≡ 0 for |ε− 1| ≥ 1
2
,

|R1(t, ε)| ≤ C
e−(a−ε)t

|ε− 1|5/6
for |ε− 1| ≤ 1

2
,

R2(t, ε) ≤


C

t5/2+ε

(
t3

ε

)b̃

for 0 ≤ t ≤ 1

C

t3v0−ε

(
t3

ε

)b̃

for t > 1.
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b̃ is an arbitrary number in (1, 7/6). On the other hand, for ε > 2,

F (t, ε, 1) ≤


C

t
9
2+ε

(
t3

ε

)11
6

for 0 ≤ t ≤ 1

C

t1+3v0−ε

(
t3

ε

)11
6

for t > 1.
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Remarks.

• The initial Dirac measure at ε = ε0 PERSISTS for all time t > 0
and is NOT REGULARISED: hyperbolic behaviour.

• The total mass of the Dirac measure DECAYS exponentially fast

in time: it is “ASYMPTOTICALLY” regularised.

• The behaviour ε−7/6 as ε → 0 PERSISTS for all time.
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Sketch of the proof.

Ft(t, ε) = − a

ε1/3
F (t, ε) +

1
ε4/3

∫ ∞

0

K
(r

ε

)
F (t, r) dr

F (0, ε) = δ(ε− 1)

Properties of the kernel K. K ∈ C∞ ((0, 1) ∪ (1,+∞)) satisfies:

K(r) ∼ a1r
1/2 as r → 0, K(r) ∼ a2r

−7/6 as r → +∞
K(r) ∼ a3(1− r)−5/6 + a4 +O((1− r)1/6) as r → 1−,

K(r) ∼ a5(r − 1)−5/6 + a6 +O((1− r)1/6) as r → 1+,
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Change of variables: ε = ex,

F (t, ε) = G(t, x), K(r/ε) = K(e−(x−y)) = ex−yK(x− y)

with K(x) = e−xK(e−x). We arrive to the Cauchy problem:
∂

∂t
G(t, x) = e−x/3

(
−aG(t, x) +

∫ ∞

−∞
K(x− y)G(t, y) dy

)
,

G(0, x) = δ(x),

In what space do we look for a solution G ?
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Due to the behaviour of K at 0 and +∞,THE BEHAVIOUR of K is

|K(x)| ∼ C1e
x
6 for x < 0

|K(x)| ∼ C2e
−3

2x for x > 0.

Therefore, IF WE WANT∫ ∞

−∞
K(x− y)G(t, y) dy < +∞

WE NEED

|G(t, x)| ≤ Ce−Mx for x < 0, |G(t, x)| ≤ Ce−mx for x > 0

for some m > −1/6 and M < 3/2. Now we BOOTSTRAP for
x > 0:
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|
∫ ∞

−∞
K(x− y)G(y)dy| ≤ |

∫ 0

−∞
K(x− y)G(y)dy|+ |

∫ x

−∞
K(z)G(x− z)dz|

≤
∫ 0

−∞
e−

3
2(x−y)e−Mydy +

∫ x

−∞
e

z
6e−m(x−z)dz

≤ C
(
e−

3
2x + e−mx

)
.

We deduce that, for x > 0 the right hand term of the equation satisfies:

e−x/3

∣∣∣∣−aG(x) +
∫ ∞

−∞
K(x− y)G(y) dy

∣∣∣∣ ≤ C
(
e−(m+1

3)x + e−
11
6 x
)

,

Therefore, |G(t, x)| ≤ Ce−
11
6 x for x > 0. This does not work for x < 0.
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LAPLACE transform in t and FOURIER transform in x: G(z, ξ).

If G(x) ≤ Ce−
11
6 x for x > 0, then considering ξ = u + i v, u ∈ R,

v ∈ R we have:∣∣e−i ξ xG(x)
∣∣ ≤ Ce(v−11

6 ) x for x > 0

and, if G(x) ≤ Ce−Mx for x < 0:∣∣e−i ξ xG(x)
∣∣ ≤ Ce(v−M) x for x < 0.

Therefore: G(z, ·) is ANALYTIC in the strip M < v < 11/6
(M < 3/2).
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The Carleman equation.

zG(z, ξ) = G(z, ξ − i

3
)Φ(ξ − i

3
) +

1√
2π

, (1)

where Φ(ξ) = −a + K̂(ξ) and K̂ is the Fourier transform of K. The

problem is then transformed in the following:

For any z ∈ C, Rez > 0, find a function G(z, ·) analytic in the strip

S = {ξ; ξ = u + iv, 4/3 < v < 11/6, u ∈ R} satisfying (1) on S.
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We introduce the NEW SET OF VARIABLES:

<eξ

3i/2
x

4i/3
x

=mξ

<eζ

=mζ

ζ = T (ξ) ≡ e6π(ξ−4
3i), g(z, ζ) = G(z, ξ), ϕ̃(ζ) = Φ(ξ)
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Then g SOLVES:

zg(z, x− i0) = ϕ(x) g(z, x + i0) +
1√
2π

for all x ∈ R+

g is analytic and bounded in D,

where,
D = {ζ ∈ T (C); ζ = reiθ, r > 0, 0 < θ < 2π},

and, for any x ∈ R+:

g(z, x + i0) = lim
ε→0

g(z, xeiε), g(z, x− i0) = lim
ε→0

g(z, xei(2π−ε))

ϕ(x) = lim
ε→0

ϕ̃(xeiε).

38



The Wiener Hopf method

The key of the argument is:

• To write the function ϕ(ζ)/z for ζ ∈ R+ as

ϕ(ζ)
z

=
M(z, ζ + i0)
M(z, ζ − i0)

, for ζ ∈ R+,

where M(z, ξ) is an analytic function of ξ on C \ R+.

• To write the function M(z, x− i0) for x ∈ R+ as

M(z, x− i0)√
2 π z

= W (z, x + i0)−W (z, x− i0) for x ∈ R+,

where W (z, ξ) is an analytic function of ξ on C \ R+.
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• This makes that the equation on g may be written:

M(z, x− i0)g(z, x− i0) + W (z, x− i0) =

M(z, x + i0)g(z, x + i0) + W (z, x + i0), for all x ∈ R+

with M(z, ·)g(z, ·) + W (z, ·) analytic in C \ R+.

• The function C(z, ·) defined by means of:

C(z, ·) ≡ M(z, ·)g(z, ·) + W (z, ·)

is then analytic in C \ {0}.

• Finally to identify this function C(z, ·) showing that it is analytic

also at ξ = 0 and then in all C.
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The decomposition of ϕ/z

If the following integral is convergent:

H(z, ζ) =
1

2πi

∫ ∞

0

ln
(

ϕ(λ)
z

)
dλ

λ− ζ
.

then, the Plemej Sojoltski formulas give, for ζ ∈ R+:

H(ζ + i0) =
1
2

ln
(

ϕ(ζ)
z

)
+

1
2πi

pv

∫ ∞

0

ln
(

ϕ(λ)
z

)
dλ

λ− ζ

H(ζ − i0) = −1
2

ln
(

ϕ(ζ)
z

)
+

1
2πi

pv

∫ ∞

0

ln
(

ϕ(λ)
z

)
dλ

λ− ζ
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Therefore :
ϕ(λ)

z
=

eH(z,ζ+i0)

eH(z,ζ−i0)
≡ M(z, ζ + i0)

M(z, ζ − i0)
.

M(z, ζ) ANALYTIC in ζ ∈ C \ R+: follows from Integrability

properties of ln(ϕ) (To check later)

Moreover, if M has suitable bounds as x → 0 and x → +∞, we

may define:

W (z, ζ) =
1

2πi

∫ ∞

0

M(z, λ− i0)
z

dλ

λ− ζ

and, by the same argument:
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M(z, x− i0)√
2 π z

= W (z, x + i0)−W (z, x− i0), for any x > 0

The function

C(z, ·) ≡ M(z, ·)g(z, ·) + W (z, ·)

is then analytic in C \ {0}. The size estimates on W and M allow

to show:

|C(z, ζ)| ≤ |ζ|−1+ρ as |ζ| → 0

|C(z, ζ)| ≤ |ζ|1−δ as |ζ| → +∞

for some ρ > 0 and δ > 0.
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C(z, ζ) is then analytic also at 0 and does not depend on ζ i. e.

∀z ∈ C \ R− : C(z, ζ) = C(z),

whence, IF A SOLUTION g EXISTS:

g(z, ζ) =
C(z)−W (z, ζ)

M(z, ζ)
,

where, C(z) = lim
ζ→0

W (z, ζ) =
1

2πi

∫ ∞

0

M(z, λ− i0)
z

dλ

λ

Due to the behaviour of ln(ϕ(ζ)) and M(z, ζ) as <eζ → ±∞, the

INTEGRALS which define H and M above do NOT CONVERGE.

They have to be slightly MODIFIED.
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Theorem. For any z ∈ C \ R−, there exists a unique bounded

solution g, given by:

g(z, ζ) =
1

2πi

ζ

z

∫ ∞

0

M(z, λ− i0)
M(z, ζ)

dλ

λ (λ− ζ)
where,

M(z, ζ) = exp
[

1
2πi

∫ ∞

0

ln
(

ϕ(λ)
z

)(
1

λ− ζ
− 1

λ− λ0

)
dλ

]
,

λ0 ∈ C \ R+ is arbitrary and α(z) =
1

2π i
ln
(
−z

a

)
.
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Example of technical lemma

Lemma 1. Suppose that, for some ε > 0 f is analytic in the cone

C(2ε0) ≡
{
ζ ∈ C; ζ = |ζ|eiθ, θ ∈ (−2ε0, 2ε0)

}
.

Let us also assume that:∫ ∞

0

|f(reiθ)|
1 + r2

dr < +∞, for any θ ∈ (−2ε0, 2ε0)

lim
λ→0λ∈C(2ε0)

f(λ) = L1, lim
λ→∞, λ∈C(2ε0)

f(λ) = L2,

|f ′(λ)| = o(1/λ), as λ → 0, λ → +∞, λ ∈ C(2ε0).
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Then, for any λ0 ∈ C \ C(2ε0), the function

F (ζ) =
1

2πi

∫ ∞

0

f(λ)
(

1
λ− ζ

− 1
λ− λ0

)
dλ

is analytic in the domain

D(ε0) =
{
ζ ∈ S; ζ = |ζ|eiθ, θ ∈ (−ε0, 2π + ε0)

}
Moreover:

F (ζ) = − L1

2πi
ln ζ + o (ln |ζ|) , as ζ → 0, ζ ∈ D(ε0)

F (ζ) = − L2

2πi
ln ζ + o (ln |ζ|) , as ζ → +∞, ζ ∈ D(ε0).
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Theorem. For any z ∈ C \ R−, there exists a unique bounded

solution G, given by:

G(z, ξ) =
3i

2π z

∫
Im y=5

3

e6πα(z) (y−ξ) V(y)
V(ξ)

dy(
e6π(y−ξ) − 1

)
where, V(ξ) = exp[−3i

∫
Im y=4

3

ln
(

Φ(y + i0)
−a

)
×

e6πy

(
1

e6πy − e6πξ
− 1

e6πy − ae6πδi

)
dy].

and δ ∈ C is arbitrary such that =mδ 6= 4 i/3 + 2 k π.

•The convergence of the integrals rely on the behaviour both local

and as <e λ → ±∞ of the function ln(Φ).
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The function Φ(ξ) := −a + K̂(ξ):

Φ(ξ) = −a +
∞∑

j=0

A1(j)
(1− 6iξ + 12j)

+
∞∑

j=0

A2(j)
(1− 3iξ + 3j)

+

+
∞∑

j=0

A3(j)
(3 + 2iξ + 2j)

+
∞∑

j=0

A4(j)
(10 + 3iξ + 6j)

; Ai(j), explicit.

Poles: ξ = (3
2 + j) i; (10

3 + 2j) i; −(1
3 + j) i; −(1

6 + 2j) i; j = 0, 1, · · ·

and: Φ(ξ) ∼ −a + b1

ξ1/6 + b2
ξ as |ξ| → +∞ and =mξ bounded.
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The zeros of Φ.

The only exact results on the zeros of Φ are:

• The function Φ has a simple zero at the point ξ = 7i/6. It

corresponds to the fact that k−7/6 is a solution of the linearised

equation.

• Moreover, it also has a simple zero at ξ = 13i/6. This corresponds

to the fact that k−1 is also a solution of the linearised equation.

• NO OTHER ZERO of Φ is known in general. But OTHER ZEROS

of Φ determine the behaviour of the term σ(t) and the lower order

terms R1 and R2 in the expansion of the fundamental solution.
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We assume and have numerically checked:

• The point ξ = 7i/6 is the only zero of Φ in the strip Imξ ∈
(−1/6, 5/3).

• The zeros of Φ nearest to 13i/6 are two simple zeros at ξ =
±u0 + iv0 with: u0 = 0.331..., v0 = 1.84020...

These are the only zeros of Φ in the strip Imξ ∈ (−1/3, 5/2).

• The graph of the function Φ(ξ) does not make any complete turn

around the origin when ξ moves along any curve connecting the two

extremes of the strip 7/6 < =mξ < 3/2..

We draw part of the curves: Φ(ξ) ξ = b + i r, −∞ < r < +∞.
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Figure 1: Some zeros and poles of Φ
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The solution g in the x, t variables

G(z, ξ) =
3i

2π z

∫
Im y=5

3

e6πα(z) (y−ξ) V(y)
V(ξ)

dy(
e6π(y−ξ) − 1

)
V(ξ) = exp[−3i

∫
Im y=4

3

ln
(

Φ(y + i0)
−a

)
×

e6πy

(
1

e6πy − e6πξ
− 1

e6πy − ae6πδi

)
dy].

In the (t, x) variables: invert Fourier and Laplace transform:
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g(t, x) =
1

(2 π)3/2
i

∫ c+∞ i

c−∞ i

ezt

[∫ ∞+b i

−∞+b i

eixξ G(z, ξ) dξ

]
dz,

for some suitable choosed b ∈ R and c ∈ R.

In particular we have to choose =mb ∈ (7/6, 11/6) to have good

decay estimates on eixξ G(z, ξ) along the integration path.
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Asymptotic behaviour for x → −∞.

Using the Theorem of residues: deform the integration contour

downward until the first pole of G(z, ξ) is reached.

This pole is ξ = 7i/6. It follows:

F−1(G)(z, x) = e−
7x
6 h(z) +

1√
2π

∫
Im ξ=b̃

eixξ G(z, ξ)dξ

h(z) =
√

2 π iRes (G(z, ·), ξ = 7i/6) .

The inverse Laplace transform gives then:

g(t, x) ∼ σ(t) e−7x/6, as x → −∞.

Same method for x → +∞.
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More Remarks.

Everything is encoded in the function Φ(ξ):

• The uniqueness of the solution: from the argument property of Φ
along horizantal lines contained in the strip 7/6 < =mξ < 3/2.

• The persistency of the Dirac measure: comes from the fact that

Φ(ξ) → a as |ξ| → ±∞.

• The decay of the total mass of the Dirac measure: a > 0.

• The asymptotic behavior as x → ±∞: come from the zeros and

poles of Φ.
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