Singular Solutions of Kinetic Equations

Existence of singular solutions of non linear kinetic equations associated with some singularity phenomena: two examples.

In Collaboration with J. J. L. Velazquez \& S. Mischler.

Plan of the talk

1. Introduction:

Uehling Uhlenbeck equation \& singularity problem.
2. The linearized problem.
3. The non linear problem.
4. Another example:

Smoluchowski equation and gelation.

The dilute gas of Bosons

Dilute gas of boson particles with interacting potential :
$v\left(x-x^{\prime}\right)=4 \pi a \hbar \delta\left(x-x^{\prime}\right) \equiv g \delta\left(x-x^{\prime}\right) ; \quad a:$ scattering length.
The particles P : mass $m=1$, momentum p, energy $|p|^{2} / 2$.
Only binary elastic collisions i.e. :
Two particles P_{1}, P_{2} collide and give rise to two particles P_{3}, P_{4} :

$$
\begin{aligned}
& p_{1}+p_{2}=p_{3}+p_{4} \quad \text { conservation of the momentum } \\
& \left|p_{1}\right|^{2}+\left|p_{2}\right|^{2}=\left|p_{3}\right|^{2}+\left|p_{4}\right|^{2} \quad \text { conservation of the energy. }
\end{aligned}
$$

The Uehling Uhlenbeck Equation

$f \equiv f(x, p, t)$:distribution of particles with momentum p at time t at point x. Satisfies the UEHLING UHLENBECK (UU) equation:

$$
\begin{aligned}
\frac{\partial f}{\partial t}+p \cdot \nabla_{x} f= & Q(f) \\
Q(f)= & \frac{2 g^{2}}{(2 \pi)^{5}} \iiint_{\mathbb{R}^{9}} W\left(p_{1}, p_{2}, p_{3}, p_{4}\right) q(f) d p_{2} d p_{3} d p_{4} \\
q(f)= & f_{3} f_{4}\left(1+f_{1}\right)\left(1+f_{2}\right)-f_{1} f_{2}\left(1+f_{3}\right)\left(1+f_{4}\right) \\
W\left(p_{1}, p_{2}, p_{3}, p_{4}\right)= & \omega\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \delta\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \times \\
& \times \delta\left(\left|p_{1}\right|^{2}+\left|p_{2}\right|^{2}-\left|p_{3}\right|^{2}-\left|p_{4}\right|^{2}\right)
\end{aligned}
$$

- The function ω is determined by solving the quantum mechanical problem of collision particles:
The interaction of bosons is short ranged:

L. W. Nordheim: Proc. Roy. Soc. London, A 119 (1928).
E. A. Uehling \& G. E. Uhlenbeck: Physical Review 43 (1933).
E. Zaremba, T. Nikuni, A. Griffin J. Low Temp. Phys. 116 (1999).
R. Baier, T. Stockkamp: arXiv:hep-ph/0412310, (Jan. 2005).

Homogeneous gas

$$
f(x, p, t) \equiv f(p, t)
$$

-The equation becomes: $\frac{\partial f}{\partial t}=Q(f)$ By the symetries of W we have :

- Conservation of particles number, momentum and energy:
$\frac{d}{d t} \int_{\mathbb{R}^{3}} f(p) d p=0, \frac{d}{d t} \int_{\mathbb{R}^{3}} f(p) p d p=0, \frac{d}{d t} \int_{\mathbb{R}^{3}} f(p)|p|^{2} d p=0$.
(at least formally...)

The entropy

The entropy is defined as

$$
\begin{aligned}
& H(f)(t)=\int_{\mathbb{R}^{3}} h(f(t, p)) d p \\
& h(f)=(1+f) \ln (1+f)-f \ln (f)
\end{aligned}
$$

It is increasing along the trajectories of the solutions:

$$
\begin{aligned}
\frac{\partial H(f)}{\partial t} & =\int_{\mathbb{R}^{3}} Q(f) h^{\prime}(f) d p \\
& \equiv \frac{1}{4} D(f) \geq 0
\end{aligned}
$$

Moreover:

Equilibria as Maxima of the entropy.

The maxima with zero momentum $(P=0)$ are:

$$
\begin{array}{r}
F_{\beta, \mu}(p)=\frac{1}{e^{\beta|p|^{2}-\mu}-1} \quad \beta>0, \mu \leq 0 \\
\beta=\left(k_{B} T\right)^{-1}, \quad(T: \text { temperature of the gas. })
\end{array}
$$

Remark.

Given β (or T):

$$
\frac{1}{e^{\beta|p|^{2}-\mu}-1} \leq \frac{1}{e^{\beta|p|^{2}}-1}, \quad \text { for all } \mu<0
$$

For a fixed temperature T : maximal particle number N_{T}. Or, for a fixed particle number N : a MINIMAL temperature T_{N}. If $T<T_{N}$?

Singular Equilibria

The answer was given by Bose \& Einstein in 1924/1925:

$$
\begin{aligned}
& F_{\beta, \mu}(p)=\frac{1}{e^{\beta|p|^{2}-\mu}-1}, \quad \text { for all } \mu \leq 0, \beta>0 \\
& G_{\beta, \rho}(p)=\frac{1}{e^{\beta|p|^{2}}-1}+\rho \delta_{0}, \quad \text { for all } \beta>0, \rho>0
\end{aligned}
$$

A consequence of the fact: Let $a \in \mathbb{R}^{3}$ and $\alpha \in \mathbb{R}$ be fixed and $\left(\varphi_{n}\right)_{n \in \mathbb{N}} ; \quad \varphi_{n} \rightarrow \alpha \delta_{a}$. Then, for any $f \in L_{2}^{1}$:

$$
H\left(f+\varphi_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} H(f) \text { and } N\left(f+\varphi_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \alpha+N(f)
$$

Proof. SUPPOSE, for the sake of simplicity that $\varphi_{n} \equiv 0$ if $|p-a| \geq 2 / n$. Then

$$
\begin{aligned}
& H\left(f+\varphi_{n}\right)=\int_{|p-a| \geq 2 / n} h(f(p, t), p) d p \\
& \quad+\int_{|p-a| \leq 2 / n} h\left(\left(f(p, t)+\varphi_{n}(p), p\right) d p\right.
\end{aligned}
$$

Using $|h(z)| \leq c \sqrt{z}$ we obtain:
$\begin{aligned} \int_{|p-a| \leq 2 / n}\left|h\left(f(p, t)+\varphi_{n}(p)\right)\right| d p \leq & c \frac{2}{\sqrt{n^{3}}}\left(\int_{|p-a| \leq 2 / n}\left[f(p, t)+\varphi_{n}(p)\right] d p\right)^{1 / 2} \\ & \longrightarrow 0 \text { as } n \rightarrow+\infty .\end{aligned}$

REMARK. The entropy estimate $H(f)<\infty$ does not give any size estimate on f since it DOES NOT PREVENTS THE CONCENTRATION of f.

Consider now the Cauchy problem:

$$
\begin{aligned}
& \frac{\partial f}{\partial t}=Q(f) \\
& f(p, 0)=f_{0}(p), \\
& f_{0}: \text { with number of particles } N, \text { energy } E \\
& \text { and } T<T_{N}
\end{aligned}
$$

If $f_{0}(p)=f_{0}(|p|), \mathrm{X}$. Lu shows in JSP 2004:

- Existence of a GLOBAL solution in the WEAK sense (measures)
- Convergence in the WEAK sense to the corresponding equlibrium (with particle number N and energy E)

Since $T<T_{N}$ this equilibrium is singular (even if f_{0} is regular):
Finite or infinite time formation of singularity?

Bose Einstein condensation

When the temperature is too low, or the initial particle number too large, the gas of bosons undergoes a phase transition: a condensate is formed in finite time
A macroscopic part of the population of particles occupies the lowest possible energy level of the system (the fundamental state). This is the Bose Einstein CONDENSATE. After the condensation the gas+condensate is described by a system of two coupled equations ...

Isotropic case: $\quad f \equiv f(|p|, t)$

$$
\text { Simplification: } \begin{aligned}
Q(f) & =\frac{1}{8} \iint_{D\left(\varepsilon_{1}\right)} q(f) \widetilde{w}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right) d \varepsilon_{3} d \varepsilon_{4} \\
q(f) & =f_{3} f_{4}\left(1+f_{1}\right)\left(1+f_{2}\right)-f_{1} f_{2}\left(1+f_{3}\right)\left(1+f_{4}\right) \\
\widetilde{w}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right) & =\frac{\min \left\{\sqrt{\varepsilon_{1}}, \sqrt{\varepsilon_{2}}, \sqrt{\varepsilon_{3}}, \sqrt{\varepsilon_{4}}\right\}}{\sqrt{\varepsilon_{1}}} \\
D\left(\varepsilon_{1}\right) & \left.=\left\{\left(\varepsilon_{3}, \varepsilon_{4}\right)\right): \varepsilon_{3}+\varepsilon_{4} \geq \varepsilon_{1}\right\}, \text { where } \varepsilon_{i}=\left|p_{i}\right|^{2} \\
\varepsilon_{2} & =\varepsilon_{3}+\varepsilon_{4}-\varepsilon_{1}
\end{aligned}
$$

Singularity Formation. A description.

Following:
D. V. Semikov \& I. I. Tkachev (Phys. Rev. Lett. 1995)
R. Lacaze, P. Lallemand, Y. Pomeau \& S. Rica (Phys. D 2001).

Near the time singularity, $T>0$ and the origin $\varepsilon=0, f \gg 1$.

$$
\begin{aligned}
(\mathrm{mUU}) \quad \frac{\partial f}{\partial t} & =\mathcal{Q}(f) \sim Q(f) \quad \text { (modified UU equation) } \\
\mathcal{Q}(f) & =\frac{1}{8} \iint_{D\left(\varepsilon_{1}\right)} \widetilde{ } \widetilde{(f)} \widetilde{w}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right) d \varepsilon_{3} d \varepsilon_{4} \\
\widetilde{q}(f) & =f_{3} f_{4}\left(f_{1}+f_{2}\right)-f_{1} f_{2}\left(f_{3}+f_{4}\right)
\end{aligned}
$$

There is a solution of $m U U$ of the form:

$$
\begin{aligned}
& f(\varepsilon, t)=A^{-1 / 2}(T-t)^{-\alpha} \Phi\left(\frac{\varepsilon}{(T-t)^{A}}\right) \\
& -\left(\nu+x \frac{d}{d x}\right) \Phi=\mathcal{Q}(\Phi), \text { and } \nu=\alpha / A
\end{aligned}
$$

where, Φ is bounded, and satisfies

$$
\Phi(x) \sim \frac{1}{x^{\nu}} \quad \text { as } x \rightarrow+\infty
$$

Then, for all $\varepsilon>0 \quad: \quad f(\varepsilon, t) \sim A^{-1 / 2}(T-t)^{-\alpha}\left(\frac{\varepsilon}{(T-t)^{A}}\right)^{-\nu}$

$$
\equiv A^{-1 / 2} \varepsilon^{-\nu}, \text { as } t \rightarrow T^{-}
$$

- as $x \rightarrow+\infty$:

$$
\begin{gathered}
\Phi(x) \sim x^{-\nu}-\frac{C(\nu)}{2(\nu-1)} x^{-3 \nu+2}+\mathcal{O}\left(x^{-5 \nu+4}\right) \\
\text { with } C(7 / 6)=C(3 / 2)=0
\end{gathered}
$$

Therefore: $\nu \neq 7 / 6, \quad \nu \neq 3 / 2$.

- Near the origin:

$$
\Phi(x)=a(\nu) x^{-7 / 6}+\cdots, \quad \text { as } x \rightarrow 0
$$

For the correct value of $\nu: a(\nu)=0$.
Numerical value: $\nu=1,234 \cdots \in(7 / 6,3 / 2)$

Equilibrium steady solutions of mUU

It is easy to check that: $\widetilde{q}(1)=\widetilde{q}\left(\varepsilon^{-1}\right)=0$
and therefore:

$$
\mathcal{Q}(1)=\mathcal{Q}\left(\varepsilon^{-1}\right)=0 .
$$

They come from the regular solutions of $Q(f)=0: \frac{1}{e^{\beta|p|^{2}-\mu}-1}$

Non-Equilibrium steady solutions:

Another solution obtained by V. E. Zakharov et. al:

$$
\mathcal{Q}\left(\varepsilon^{-7 / 6}\right)=0 .
$$

- Although $\widetilde{q}\left(\varepsilon^{-7 / 6}\right) \neq 0$.
- In the original variables $p \in \mathbb{R}^{3}$:
for some constant $C>0: \int_{|p| \leq K} \mathcal{Q}\left(|p|^{-7 / 3}\right) d p=-C$ for all $K>0$
So we have actually: $\mathcal{Q}\left(|p|^{-7 / 3}\right)=-C \delta_{p=0}$.

These two sets of results by:

- R. Lacaze, P. Lallemand, Y. Pomeau \& S. Rica:

Near the origin: $f(\varepsilon, t) \sim a(\nu) g(t) \varepsilon^{-7 / 6}+\cdots, \quad$ as $\varepsilon \rightarrow 0$.

- V. E, Zakharov et. al: $\mathcal{Q}\left(\varepsilon^{-7 / 6}\right)=0$.
seem to indicate a particular role of the power $\varepsilon^{-7 / 6}$ as $\varepsilon \sim 0$.
Our main result (very partial): That behaviour is stable, at least locally in time.

Main Theorem

Suppose that: $\quad\left|f_{0}(\varepsilon)-A \varepsilon^{-7 / 6}\right| \leq \frac{B}{\varepsilon^{7 / 6-\delta}}, \quad 0 \leq \varepsilon \leq 1$,

$$
\begin{aligned}
\left|f_{0}^{\prime}(\varepsilon)+\frac{7}{6} A \varepsilon^{-13 / 6}\right| & \leq \frac{B}{\varepsilon^{13 / 6-\delta}}, \quad 0 \leq \varepsilon \leq 1 \\
f_{0}(\varepsilon) & \leq B \frac{e^{-D \varepsilon}}{\varepsilon^{7 / 6}}, \quad k \geq 1
\end{aligned}
$$

for A, B, C, δ positive constants.
Then there are: a unique solution of $\mathrm{UU}, f \in \mathbf{C}^{1,0}((0, T) \times(0,+\infty)$), a function $\lambda(t) \in \mathbf{C}[0, T] \cap \mathbf{C}^{1}(0, T)$, and constants $L>0, T>0$ such that:

$$
\begin{aligned}
& 0 \leq f(\varepsilon, t) \leq L \frac{e^{-D \varepsilon}}{\varepsilon^{7 / 6}}, \quad \text { if } \varepsilon>0, t \in(0, T) \\
& \left|f(\varepsilon, t)-\lambda(t) \varepsilon^{-7 / 6}\right| \leq L \varepsilon^{-7 / 6+\delta / 2}, \quad \varepsilon \leq 1, \quad t \in(0, T) \\
& |\lambda(t)| \leq L, \quad \text { for } t \in(0, T)
\end{aligned}
$$

Due to the precise behaviour $f(\varepsilon, t) \sim \varepsilon^{-7 / 6}$ at $\varepsilon=0$,
this solution satisfies:

$$
\frac{d}{d t}\left(\int_{|\varepsilon| \leq K} \sqrt{\varepsilon} f(\varepsilon, t) d \varepsilon\right)=-C \lambda^{3}(t)+\mathcal{O}\left(K^{1 / 10}\right)
$$

as $K \rightarrow 0$:
\Longrightarrow no conservation of the number of particles.

Plan of the proof

- Linearisation of the "modified" U-U equation:

$$
\frac{\partial f}{\partial t}=\mathcal{Q}(f)
$$

around $\varepsilon^{-7 / 6}$. The fundamental solution. The linear semigroup. (Largely based on Zakharov work. Our main contribution: precise size estimates.)

- Treat the Ueling Uhlenbeck equation as a nonlinear perturbation.

The work by Zakharov et al.

- Systematic method for the deduction, under suitable hypothesis, of kinetic equations of this type from system of PDE's with a Hamiltonian formulation.
- Surface water waves, Langmuir waves etc...
- Sistematic method to find homogeneous non equilibrium steady states.
- General method to study the linear stability of these steady states.
A. M. Balk, V. E. Zakharov: A. M. S. Translations Series 2, Vol. 182, 1998, 1-81.

Linearisation

We linearise around $f(\varepsilon)=\varepsilon^{-7 / 6}: f(t, \varepsilon)=\varepsilon^{-7 / 6}+F(t, \varepsilon)$

$$
\widetilde{q}\left(\varepsilon^{-7 / 6}+F\right)=\widetilde{q}\left(\varepsilon^{-7 / 6}\right)+\widetilde{\ell}\left(\varepsilon^{-7 / 6}, F\right)+\widetilde{n}\left(\varepsilon^{-7 / 6}, F\right)
$$

$\widetilde{\ell}\left(\varepsilon^{-7 / 6}, F\right)$: linear with respect to F. Consider the equation:

$$
\frac{\partial F}{\partial t}=\frac{1}{8} \iint_{D\left(\varepsilon_{1}\right)} \widetilde{\ell}\left(\varepsilon^{-7 / 6}+F\right) \widetilde{w}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right) d \varepsilon_{3} d \varepsilon_{4}
$$

and obtain the following equation for F : (a and K explicit)

$$
\frac{\partial F}{\partial t}=\mathcal{L}(F) \equiv-\frac{a}{\varepsilon^{1 / 3}} F(\varepsilon)+\frac{1}{\varepsilon^{4 / 3}} \int_{0}^{\infty} K\left(\frac{r}{\varepsilon}\right) F(r) d r
$$

The fundamental solution of \mathcal{L}

$$
F_{t}\left(t, \varepsilon, \varepsilon_{0}\right)=-\frac{a}{\varepsilon^{1 / 3}} F\left(t, \varepsilon, \varepsilon_{0}\right)+\frac{1}{\varepsilon^{4 / 3}} \int_{0}^{\infty} K\left(\frac{r}{\varepsilon}\right) F\left(t, r, \varepsilon_{0}\right) d r
$$

$$
F\left(0, \varepsilon, \varepsilon_{0}\right)=\delta\left(\varepsilon-\varepsilon_{0}\right)
$$

Theorem. For all $\varepsilon_{0}>0$, there exists a unique solution:

$$
F\left(t, \varepsilon, \varepsilon_{0}\right)=\frac{1}{\varepsilon_{0}} F\left(\frac{t}{\varepsilon_{0}^{1 / 3}}, \frac{\varepsilon}{\varepsilon_{0}}, 1\right)
$$

such that:

For $\varepsilon \in(0,2)$ the function $F(t, \varepsilon, 1)$ can be written as:

$$
F(t, \varepsilon, 1)=e^{-a t} \delta(\varepsilon-1)+\sigma(t) \varepsilon^{-7 / 6}+\mathcal{R}_{1}(t, \varepsilon)+\mathcal{R}_{2}(t, \varepsilon)
$$

where $\sigma \in \mathbf{C}[0,+\infty)$ satisfies:

$$
\sigma(t)= \begin{cases}A t^{4}+\mathcal{O}\left(t^{4+\varepsilon}\right) & \text { as } t \rightarrow 0^{+}, \\ \mathcal{O}\left(t^{-\left(3 v_{0}-5 / 2\right)}\right) & \text { as } t \rightarrow+\infty\end{cases}
$$

A is an explicit numerical constant, $\varepsilon>0$ is an arbitrarily small number, $v_{0} \sim 1.84020 \ldots>11 / 6$.
\mathcal{R}_{1} and \mathcal{R}_{2} satisfy:

$$
\begin{gathered}
\mathcal{R}_{1}(t, \varepsilon) \equiv 0 \quad \text { for }|\varepsilon-1| \geq \frac{1}{2} \\
\left|\mathcal{R}_{1}(t, \varepsilon)\right| \leq C \frac{e^{-(a-\varepsilon) t}}{|\varepsilon-1|^{5 / 6}} \quad \text { for }|\varepsilon-1| \leq \frac{1}{2} \\
\mathcal{R}_{2}(t, \varepsilon) \leq \begin{cases}\frac{C}{t^{5 / 2+\varepsilon}}\left(\frac{t^{3}}{\varepsilon}\right)^{\tilde{b}} & \text { for } 0 \leq t \leq 1 \\
\frac{C}{t^{3 v_{0}-\varepsilon}}\left(\frac{t^{3}}{\varepsilon}\right)^{\tilde{b}} & \text { for } t>1\end{cases}
\end{gathered}
$$

\tilde{b} is an arbitrary number in (1,7/6). On the other hand, for $\varepsilon>2$,

$$
F(t, \varepsilon, 1) \leq \begin{cases}\frac{C}{t^{\frac{9}{2}+\varepsilon}}\left(\frac{t^{3}}{\varepsilon}\right)^{\frac{11}{6}} \quad \text { for } 0 \leq t \leq 1 \\ \frac{C}{t^{1+3 v_{0}-\varepsilon}}\left(\frac{t^{3}}{\varepsilon}\right)^{\frac{11}{6}} \quad \text { for } t>1\end{cases}
$$

Remarks.

- The initial Dirac measure at $\varepsilon=\varepsilon_{0}$ PERSISTS for all time $t>0$ and is NOT REGULARISED: hyperbolic behaviour.
- The total mass of the Dirac measure DECAYS exponentially fast in time: it is "ASYMPTOTICALLY" regularised.
- The behaviour $\varepsilon^{-7 / 6}$ as $\varepsilon \rightarrow 0$ PERSISTS for all time.

Sketch of the proof.

$$
\begin{aligned}
& F_{t}(t, \varepsilon)=-\frac{a}{\varepsilon^{1 / 3}} F(t, \varepsilon)+\frac{1}{\varepsilon^{4 / 3}} \int_{0}^{\infty} K\left(\frac{r}{\varepsilon}\right) F(t, r) d r \\
& F(0, \varepsilon)=\delta(\varepsilon-1)
\end{aligned}
$$

Properties of the kernel $K . K \in \mathbf{C}^{\infty}((0,1) \cup(1,+\infty))$ satisfies:

$$
\begin{gathered}
K(r) \sim a_{1} r^{1 / 2} \quad \text { as } \quad r \rightarrow 0, \quad K(r) \sim a_{2} r^{-7 / 6} \quad \text { as } \quad r \rightarrow+\infty \\
K(r) \sim a_{3}(1-r)^{-5 / 6}+a_{4}+\mathcal{O}\left((1-r)^{1 / 6}\right) \quad \text { as } \quad r \rightarrow 1^{-} \\
K(r) \sim a_{5}(r-1)^{-5 / 6}+a_{6}+\mathcal{O}\left((1-r)^{1 / 6}\right) \quad \text { as } \quad r \rightarrow 1^{+},
\end{gathered}
$$

Change of variables: $\varepsilon=e^{x}$,

$$
F(t, \varepsilon)=\mathcal{G}(t, x), \quad K(r / \varepsilon)=K\left(e^{-(x-y)}\right)=e^{x-y} \mathcal{K}(x-y)
$$

with $\mathcal{K}(x)=e^{-x} K\left(e^{-x}\right)$. We arrive to the Cauchy problem:

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \mathcal{G}(t, x)=e^{-x / 3}\left(-a \mathcal{G}(t, x)+\int_{-\infty}^{\infty} \mathcal{K}(x-y) \mathcal{G}(t, y) d y\right), \\
\mathcal{G}(0, x)=\delta(x),
\end{array}\right.
$$

In what space do we look for a solution \mathcal{G} ?

Due to the behaviour of K at 0 and $+\infty$,THE BEHAVIOUR of \mathcal{K} is

$$
\begin{aligned}
& |\mathcal{K}(x)| \sim C_{1} e^{\frac{x}{6}} \text { for } \quad x<0 \\
& |\mathcal{K}(x)| \sim C_{2} e^{-\frac{3}{2} x} \quad \text { for } \quad x>0 .
\end{aligned}
$$

Therefore, IF WE WANT

$$
\int_{-\infty}^{\infty} \mathcal{K}(x-y) \mathcal{G}(t, y) d y<+\infty
$$

WE NEED
$|\mathcal{G}(t, x)| \leq C e^{-M x} \quad$ for $\quad x<0, \quad|\mathcal{G}(t, x)| \leq C e^{-m x} \quad$ for $\quad x>0$ for some $m>-1 / 6$ and $M<3 / 2$. Now we BOOTSTRAP for $x>0$:

$$
\begin{aligned}
\left|\int_{-\infty}^{\infty} \mathcal{K}(x-y) \mathcal{G}(y) d y\right| & \leq\left|\int_{-\infty}^{0} \mathcal{K}(x-y) \mathcal{G}(y) d y\right|+\left|\int_{-\infty}^{x} \mathcal{K}(z) \mathcal{G}(x-z) d z\right| \\
& \leq \int_{-\infty}^{0} e^{-\frac{3}{2}(x-y)} e^{-M y} d y+\int_{-\infty}^{x} e^{\frac{z}{6}} e^{-m(x-z)} d z \\
& \leq C\left(e^{-\frac{3}{2} x}+e^{-m x}\right)
\end{aligned}
$$

We deduce that, for $x>0$ the right hand term of the equation satisfies:

$$
e^{-x / 3}\left|-a \mathcal{G}(x)+\int_{-\infty}^{\infty} K(x-y) \mathcal{G}(y) d y\right| \leq C\left(e^{-\left(m+\frac{1}{3}\right) x}+e^{-\frac{11}{6} x}\right)
$$

Therefore, $|\mathcal{G}(t, x)| \leq C e^{-\frac{11}{6} x}$ for $x>0$. This does not work for $x<0$.

LAPLACE transform in t and FOURIER transform in $x: G(z, \xi)$. If $\mathcal{G}(x) \leq C e^{-\frac{11}{6} x}$ for $x>0$, then considering $\xi=u+i v, u \in \mathbb{R}$, $v \in \mathbb{R}$ we have:

$$
\left|e^{-i \xi x} \mathcal{G}(x)\right| \leq C e^{\left(v-\frac{11}{6}\right) x} \quad \text { for } x>0
$$

and, if $\mathcal{G}(x) \leq C e^{-M x}$ for $x<0$:

$$
\left|e^{-i \xi x} \mathcal{G}(x)\right| \leq C e^{(v-M) x} \quad \text { for } x<0
$$

Therefore: $G(z, \cdot)$ is ANALYTIC in the strip $M<v<11 / 6$ ($M<3 / 2$).

The Carleman equation.

$$
\begin{equation*}
z G(z, \xi)=G\left(z, \xi-\frac{i}{3}\right) \Phi\left(\xi-\frac{i}{3}\right)+\frac{1}{\sqrt{2 \pi}}, \tag{1}
\end{equation*}
$$

where $\Phi(\xi)=-a+\widehat{\mathcal{K}}(\xi)$ and $\widehat{\mathcal{K}}$ is the Fourier transform of \mathcal{K}. The problem is then transformed in the following:

For any $z \in \mathbb{C}, \mathcal{R e} e>0$, find a function $G(z, \cdot)$ analytic in the strip $S=\{\xi ; \xi=u+i v, 4 / 3<v<11 / 6, u \in \mathbb{R}\}$ satisfying (1) on S.

We introduce the NEW SET OF VARIABLES:

Then g SOLVES:

$$
z g(z, x-i 0)=\varphi(x) g(z, x+i 0)+\frac{1}{\sqrt{2 \pi}} \quad \text { for all } x \in \mathbb{R}^{+}
$$

g is analytic and bounded in D,
where,

$$
D=\left\{\zeta \in T(\mathbb{C}) ; \zeta=r e^{i \theta}, r>0,0<\theta<2 \pi\right\}
$$

and, for any $x \in \mathbb{R}^{+}$:

$$
\begin{aligned}
g(z, x+i 0)= & \lim _{\varepsilon \rightarrow 0} g\left(z, x e^{i \varepsilon}\right), \quad g(z, x-i 0)=\lim _{\varepsilon \rightarrow 0} g\left(z, x e^{i(2 \pi-\varepsilon)}\right) \\
& \varphi(x)=\lim _{\varepsilon \rightarrow 0} \widetilde{\varphi}\left(x e^{i \varepsilon}\right) .
\end{aligned}
$$

The Wiener Hopf method

The key of the argument is:

- To write the function $\varphi(\zeta) / z$ for $\zeta \in \mathbb{R}^{+}$as

$$
\frac{\varphi(\zeta)}{z}=\frac{M(z, \zeta+i 0)}{M(z, \zeta-i 0)}, \quad \text { for } \quad \zeta \in \mathbb{R}^{+}
$$

where $M(z, \xi)$ is an analytic function of ξ on $\mathbb{C} \backslash \mathbb{R}^{+}$.

- To write the function $M(z, x-i 0)$ for $x \in \mathbb{R}^{+}$as

$$
\frac{M(z, x-i 0)}{\sqrt{2 \pi} z}=W(z, x+i 0)-W(z, x-i 0) \quad \text { for } \quad x \in \mathbb{R}^{+},
$$

where $W(z, \xi)$ is an analytic function of ξ on $\mathbb{C} \backslash \mathbb{R}^{+}$.

- This makes that the equation on g may be written:

$$
\begin{aligned}
& M(z, x-i 0) g(z, x-i 0)+W(z, x-i 0)= \\
& \quad M(z, x+i 0) g(z, x+i 0)+W(z, x+i 0), \text { for all } x \in \mathbb{R}^{+}
\end{aligned}
$$

with $M(z, \cdot) g(z, \cdot)+W(z, \cdot)$ analytic in $\mathbb{C} \backslash \mathbb{R}^{+}$.

- The function $C(z, \cdot)$ defined by means of:

$$
C(z, \cdot) \equiv M(z, \cdot) g(z, \cdot)+W(z, \cdot)
$$

is then analytic in

- Finally to identify this function $C(z, \cdot)$ showing that it is analytic also at $\xi=0$ and then in all \mathbb{C}.

The decomposition of φ / z

If the following integral is convergent:

$$
H(z, \zeta)=\frac{1}{2 \pi i} \int_{0}^{\infty} \ln \left(\frac{\varphi(\lambda)}{z}\right) \frac{d \lambda}{\lambda-\zeta}
$$

then, the Plemej Sojoltski formulas give, for $\zeta \in \mathbb{R}^{+}$:

$$
\begin{aligned}
& H(\zeta+i 0)=\frac{1}{2} \ln \left(\frac{\varphi(\zeta)}{z}\right)+\frac{1}{2 \pi i} p v \int_{0}^{\infty} \ln \left(\frac{\varphi(\lambda)}{z}\right) \frac{d \lambda}{\lambda-\zeta} \\
& H(\zeta-i 0)=-\frac{1}{2} \ln \left(\frac{\varphi(\zeta)}{z}\right)+\frac{1}{2 \pi i} p v \int_{0}^{\infty} \ln \left(\frac{\varphi(\lambda)}{z}\right) \frac{d \lambda}{\lambda-\zeta}
\end{aligned}
$$

Therefore : $\quad \frac{\varphi(\lambda)}{z}=\frac{e^{H(z, \zeta+i 0)}}{e^{H(z, \zeta-i 0)}} \equiv \frac{M(z, \zeta+i 0)}{M(z, \zeta-i 0)}$.
$M(z, \zeta)$ ANALYTIC in $\zeta \in \mathbb{C} \backslash \mathbb{R}^{+}$: follows from Integrability properties of $\ln (\varphi)$ (To check later)

Moreover, if M has suitable bounds as $x \rightarrow 0$ and $x \rightarrow+\infty$, we may define:

$$
W(z, \zeta)=\frac{1}{2 \pi i} \int_{0}^{\infty} \frac{M(z, \lambda-i 0)}{z} \frac{d \lambda}{\lambda-\zeta}
$$

and, by the same argument:

$$
\frac{M(z, x-i 0)}{\sqrt{2 \pi} z}=W(z, x+i 0)-W(z, x-i 0), \quad \text { for any } x>0
$$

The function

$$
C(z, \cdot) \equiv M(z, \cdot) g(z, \cdot)+W(z, \cdot)
$$

is then analytic in $\mathbb{C} \backslash\{0\}$. The size estimates on W and M allow to show:

$$
\begin{array}{r}
|C(z, \zeta)| \leq|\zeta|^{-1+\rho} \quad \text { as } \quad|\zeta| \rightarrow 0 \\
|C(z, \zeta)| \leq|\zeta|^{1-\delta} \quad \text { as } \quad|\zeta| \rightarrow+\infty
\end{array}
$$

for some $\rho>0$ and $\delta>0$.
$C(z, \zeta)$ is then analytic also at 0 and does not depend on ζ i. e.

$$
\forall z \in \mathbb{C} \backslash \mathbb{R}^{-}: \quad C(z, \zeta)=C(z)
$$

whence, IF A SOLUTION g EXISTS:

$$
\begin{aligned}
& g(z, \zeta)=\frac{C(z)-W(z, \zeta)}{M(z, \zeta)} \\
& C(z)=\lim _{\zeta \rightarrow 0} W(z, \zeta)=\frac{1}{2 \pi i} \int_{0}^{\infty} \frac{M(z, \lambda-i 0)}{z} \frac{d \lambda}{\lambda}
\end{aligned}
$$

where,

Due to the behaviour of $\ln (\varphi(\zeta))$ and $M(z, \zeta)$ as $\Re e \zeta \rightarrow \pm \infty$, the INTEGRALS which define H and M above do NOT CONVERGE. They have to be slightly MODIFIED.

Theorem. For any $z \in \mathbb{C} \backslash \mathbb{R}^{-}$, there exists a unique bounded solution g, given by:

$$
g(z, \zeta)=\frac{1}{2 \pi i} \frac{\zeta}{z} \int_{0}^{\infty} \frac{M(z, \lambda-i 0)}{M(z, \zeta)} \frac{d \lambda}{\lambda(\lambda-\zeta)}
$$

where,

$$
M(z, \zeta)=\exp \left[\frac{1}{2 \pi i} \int_{0}^{\infty} \ln \left(\frac{\varphi(\lambda)}{z}\right)\left(\frac{1}{\lambda-\zeta}-\frac{1}{\lambda-\lambda_{0}}\right) d \lambda\right]
$$

$\lambda_{0} \in \mathbb{C} \backslash \mathbb{R}^{+}$is arbitrary and $\alpha(z)=\frac{1}{2 \pi i} \ln \left(-\frac{z}{a}\right)$.

Example of technical lemma

Lemma 1. Suppose that, for some $\varepsilon>0 f$ is analytic in the cone

$$
C\left(2 \varepsilon_{0}\right) \equiv\left\{\zeta \in \mathbb{C} ; \zeta=|\zeta| e^{i \theta}, \theta \in\left(-2 \varepsilon_{0}, 2 \varepsilon_{0}\right)\right\}
$$

Let us also assume that:

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{\left|f\left(r e^{i \theta}\right)\right|}{1+r^{2}} d r<+\infty, \text { for any } \theta \in\left(-2 \varepsilon_{0}, 2 \varepsilon_{0}\right) \\
& \lim _{\lambda \rightarrow 0 \lambda \in C\left(2 \varepsilon_{0}\right)} f(\lambda)=L_{1}, \quad \lim _{\lambda \rightarrow \infty, \lambda \in C\left(2 \varepsilon_{0}\right)} f(\lambda)=L_{2} \\
& \left|f^{\prime}(\lambda)\right|=o(1 / \lambda), \quad \text { as } \lambda \rightarrow 0, \lambda \rightarrow+\infty, \lambda \in C\left(2 \varepsilon_{0}\right) .
\end{aligned}
$$

Then, for any $\lambda_{0} \in \mathbb{C} \backslash C\left(2 \varepsilon_{0}\right)$, the function

$$
F(\zeta)=\frac{1}{2 \pi i} \int_{0}^{\infty} f(\lambda)\left(\frac{1}{\lambda-\zeta}-\frac{1}{\lambda-\lambda_{0}}\right) d \lambda
$$

is analytic in the domain

$$
D\left(\varepsilon_{0}\right)=\left\{\zeta \in \mathcal{S} ; \zeta=|\zeta| e^{i \theta}, \theta \in\left(-\varepsilon_{0}, 2 \pi+\varepsilon_{0}\right)\right\}
$$

Moreover:

$$
\begin{gathered}
F(\zeta)=-\frac{L_{1}}{2 \pi i} \ln \zeta+o(\ln |\zeta|), \quad \text { as } \zeta \rightarrow 0, \zeta \in D\left(\varepsilon_{0}\right) \\
F(\zeta)=-\frac{L_{2}}{2 \pi i} \ln \zeta+o(\ln |\zeta|), \quad \text { as } \zeta \rightarrow+\infty, \zeta \in D\left(\varepsilon_{0}\right) .
\end{gathered}
$$

Theorem. For any $z \in \mathbb{C} \backslash \mathbb{R}^{-}$, there exists a unique bounded solution G, given by:

$$
\begin{aligned}
G(z, \xi)= & \frac{3 i}{2 \pi z} \int_{\mathcal{I} m y=\frac{5}{3}} e^{6 \pi \alpha(z)(y-\xi)} \frac{\mathcal{V}(y)}{\mathcal{V}(\xi)} \frac{d y}{\left(e^{6 \pi(y-\xi)}-1\right)} \\
\text { where, } \quad \mathcal{V}(\xi)= & \exp \left[-3 i \int_{\mathcal{I} m y=\frac{4}{3}} \ln \left(\frac{\Phi(y+i 0)}{-a}\right) \times\right. \\
& \left.e^{6 \pi y}\left(\frac{1}{e^{6 \pi y}-e^{6 \pi \xi}}-\frac{1}{e^{6 \pi y}-a e^{6 \pi \delta i}}\right) d y\right] .
\end{aligned}
$$

and $\delta \in \mathbb{C}$ is arbitrary such that $\Im m \delta \neq 4 i / 3+2 k \pi$.

- The convergence of the integrals rely on the behaviour both local and as $\Re e \lambda \rightarrow \pm \infty$ of the function $\ln (\Phi)$.

The function $\Phi(\xi):=-a+\widehat{\mathcal{K}}(\xi)$:

$$
\begin{aligned}
& \Phi(\xi)=-a+\sum_{j=0}^{\infty} \frac{A_{1}(j)}{(1-6 i \xi+12 j)}+\sum_{j=0}^{\infty} \frac{A_{2}(j)}{(1-3 i \xi+3 j)}+ \\
& +\sum_{j=0}^{\infty} \frac{A_{3}(j)}{(3+2 i \xi+2 j)}+\sum_{j=0}^{\infty} \frac{A_{4}(j)}{(10+3 i \xi+6 j)} ; \quad A_{i}(j), \text { explicit. }
\end{aligned}
$$

Poles: $\xi=\left(\frac{3}{2}+j\right) i ;\left(\frac{10}{3}+2 j\right) i ;-\left(\frac{1}{3}+j\right) i ;-\left(\frac{1}{6}+2 j\right) i ; j=0,1, \cdots$
and: $\quad \Phi(\xi) \sim-a+\frac{b_{1}}{\xi^{1 / 6}}+\frac{b_{2}}{\xi} \quad$ as $|\xi| \rightarrow+\infty$ and $\Im m \xi$ bounded.

The zeros of Φ.

The only exact results on the zeros of Φ are:

- The function Φ has a simple zero at the point $\xi=7 i / 6$. It corresponds to the fact that $k^{-7 / 6}$ is a solution of the linearised equation.
- Moreover, it also has a simple zero at $\xi=13 i / 6$. This corresponds to the fact that k^{-1} is also a solution of the linearised equation.
- NO OTHER ZERO of Φ is known in general. But OTHER ZEROS of Φ determine the behaviour of the term $\sigma(t)$ and the lower order terms \mathcal{R}_{1} and \mathcal{R}_{2} in the expansion of the fundamental solution.

We assume and have numerically checked:

- The point $\xi=7 i / 6$ is the only zero of Φ in the strip $\operatorname{Im} \xi \in$ $(-1 / 6,5 / 3)$.
- The zeros of Φ nearest to $13 i / 6$ are two simple zeros at $\xi=$ $\pm u_{0}+i v_{0}$ with: $u_{0}=0.331 \ldots, \quad v_{0}=1.84020 \ldots$
These are the only zeros of Φ in the strip $\operatorname{Im} \xi \in(-1 / 3,5 / 2)$.
- The graph of the function $\Phi(\xi)$ does not make any complete turn around the origin when ξ moves along any curve connecting the two extremes of the strip $7 / 6<\Im m \xi<3 / 2$..

We draw part of the curves: $\Phi(\xi) \xi=b+i r,-\infty<r<+\infty$.

Figure 1: Some zeros and poles of Φ

Figure 2: $b=-1 / 4$

Figure 3: $b=1$

Figure 4: $b=4 / 3$

Figure 5: $b=5 / 3$

Figure 6: $b=21 / 12$

Figure 7: $b=23 / 12$

Figure 8: $b=1.840205625$

Figure 9: $b=1.8402088125$

The solution g in the x, t variables

$$
\begin{aligned}
& G(z, \xi)=\frac{3 i}{2 \pi z} \int_{\mathcal{I} m y=\frac{5}{3}} e^{6 \pi \alpha(z)(y-\xi)} \frac{\mathcal{V}(y)}{\mathcal{V}(\xi)} \frac{d y}{\left(e^{6 \pi(y-\xi)}-1\right)} \\
& \mathcal{V}(\xi)=\exp \left[-3 i \int_{\mathcal{I} m y=\frac{4}{3}} \ln \left(\frac{\Phi(y+i 0)}{-a}\right) \times\right. \\
& \left.\quad e^{6 \pi y}\left(\frac{1}{e^{6 \pi y}-e^{6 \pi \xi}}-\frac{1}{e^{6 \pi y}-a e^{6 \pi \delta i}}\right) d y\right] .
\end{aligned}
$$

In the (t, x) variables: invert Fourier and Laplace transform:

$$
g(t, x)=\frac{1}{(2 \pi)^{3 / 2} i} \int_{c-\infty i}^{c+\infty i} e^{z t}\left[\int_{-\infty+b i}^{\infty+b i} e^{i x \xi} G(z, \xi) d \xi\right] d z,
$$

for some suitable choosed $b \in \mathbb{R}$ and $c \in \mathbb{R}$.

In particular we have to choose $\Im m b \in(7 / 6,11 / 6)$ to have good decay estimates on $e^{i x \xi} G(z, \xi)$ along the integration path.

Asymptotic behaviour for $x \rightarrow-\infty$.

Using the Theorem of residues: deform the integration contour downward until the first pole of $G(z, \xi)$ is reached.
This pole is $\xi=7 i / 6$. It follows:

$$
\begin{aligned}
\mathcal{F}^{-1}(G)(z, x) & =e^{-\frac{7 x}{6}} h(z)+\frac{1}{\sqrt{2 \pi}} \int_{\mathcal{I} m \xi=\tilde{b}} e^{i x \xi} G(z, \xi) d \xi \\
h(z) & =\sqrt{2 \pi} i \operatorname{Res}(G(z, \cdot), \xi=7 i / 6) .
\end{aligned}
$$

The inverse Laplace transform gives then:

$$
g(t, x) \sim \sigma(t) e^{-7 x / 6}, \quad \text { as } x \rightarrow-\infty
$$

[^0]
More Remarks.

Everything is encoded in the function $\Phi(\xi)$:

- The uniqueness of the solution: from the argument property of Φ along horizantal lines contained in the strip $7 / 6<\Im m \xi<3 / 2$.
- The persistency of the Dirac measure: comes from the fact that $\Phi(\xi) \rightarrow a$ as $|\xi| \rightarrow \pm \infty$.
- The decay of the total mass of the Dirac measure: $a>0$.
- The asymptotic behavior as $x \rightarrow \pm \infty$: come from the zeros and poles of Φ.

[^0]: Same method for $x \rightarrow+\infty$.

