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Short Wavelength Wave Packets

This talk is about the propagation of wave of short wave-
length,

uǫ ∼ e2πi(τ(ξ)t+x.ξ)/ǫ a(t, x) , := wave packets

Example. D’Alembert’s wave equation,

u(t, x) ∼ 0 , := ∂2
t −

N
∑

j=1

∂2
j ,

∂j := ∂/∂xj , τ(ξ)2 = |ξ|2, τ = ±|ξ|.

Question. Why short wavelength?

Answer #1. Oscillation determines a velocity, For ,

group velocity = −∇ξτ = V = ∓ξ/|ξ| ,
(

∂t + V.∂x

)

a = 0 .

Answer #2. Rectilinear propagation. A solution which is
not short wavelength will bend around an obstacle. Short
wavelength solutions will, to leading order, propagate on
straight lines leading to a shadow. Figure at blackboard.
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Geometric Optics in Physics and Mathematics

The law of rectilinear propagation is an approximation in
the limit of small wavelength.

Similarly for the laws of reflection and refraction of geometric
optics.

The physical theory of geometric optics is a short wavelength
approximation to the Maxwell’s equations.

We use the word geometric optics to be synonymous with
short wavelength asymptotics for partial differential equa-
tions.
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Derivation of Rectilinear Propagation

Solutions which are superpositions of plane waves with wave
number ξ/ǫ satisfying ξ/ǫ− ξ/ǫ = O(1),

uǫ(t, x) =

∫

e2πi(τ(ξ)t+x.ξ)/ǫ α
(ξ − ξ

ǫ

)

dξ, α ∈ C∞
0 (RN ).

Change variable,

ξ − ξ

ǫ
:= ζ, ξ = ξ + ǫζ, dξ = ǫNdζ.

∫

e2πi(τ(ξ+ǫζ)t+x.(ξ+ǫζ))/ǫ α(ζ) ǫN dζ

Taylor approximation to order 1. Divide by ǫN ,

e2πi(τ(ξ)t+ξ.x)/ǫ

∫

e2πi(x−Vt).ζ α(ζ) dζ = e2πiS/ǫ a(x− Vt),

S := τ(ξ)t+ ξ.x, a(x) :=

∫

e2πix.ζ α(ζ) dζ .
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Derivation of Diffractive Geometric Optics

e2πiS/ǫ

∫

e2πi((τ(ξ+ǫζ)−τ(ξ))t/ǫ+x.ζ) α(ζ) dζ

Taylor to order 2. e2πiS/ǫ times

∫

e2πi(x−Vt).ζ e2πi∇2

ξτ(ξ)(ζ,ζ)ǫt α(ζ) dζ = a(x− Vt, ǫt),

a(T , x) =

∫

e2πix.ζ e2πi∇2

ξτ(ξ)(ζ,ζ)T α(ζ) dζ

∂T a = 2π i∇2
ξτ(ξ)(∂x, ∂x)a .

Schrödinger in slow time T . Accurate to t ∼ 1/ǫ.

Captures decay and spreading. Diffractive geometric optics.

The (nonlinear) Schrödinger equation for lasers is diffractive
geometric optics for a (nonlinear) Maxwell equation.
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Purely Periodic Media

utt − divA(x) gradu = 0

∂β
xA ∈ L∞, Aij(x) positive definite, 1-periodic in x.

”any” u(x) =

∫

e2πixξ a(ξ) dξ
(

Fourier
)

Identify ξ modulo Z
N ,

ξ = θ + n, n ∈ Z
N , θ ∈ [0, 1[N

u =

∫

[0,1[N

∑

n

a(θ + n) e2πix(θ+n) dθ

=

∫

[0,1[N
e2πiθ.xg(x, θ) dθ, g periodic in x, (pd. = 1)

Def. g is θ-periodic iff e−2πiθ.xg is periodic.
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Bloch Spectral Theory

Every u is a sum over θ ∈ [0, 1[N of θ-periodic functions.

g is θ−periodic ⇒ ∂xg is θ−periodic.

g is θ−periodic and a is periodic ⇒ a g is θ−periodic

−divA(x) grad
{

θ−periodic
}

⊂
{

θ−periodic
}

Selfadjoint. Compact resolvent (ellipticity). For θ 6= 0,

Eigenvalues and normalized eigenfunctions,

0 < λ1(θ) ≤ λ2(θ) ≤ · · · ≤ λn(θ) ≤ · · · → +∞.

e2πiθ.x ψn(x, θ), ψn periodique.

−divA(x) grad
(

e2πiθ.x ψn(x, θ)
)

= λn(θ)
(

e2πiθ.x ψn(x, θ)
)

.

Spectrum is ∪nλn

(

[0, 1]N
)

. Closed intervals called bands.
Separated by open gaps (which may be absent).

Solutions of vtt − divA grad v = 0 are superpositions in θ, n
of the Bloch plane waves

e2πi(ωt+θ.x) ψn(x, θ), 4π2ω2 = λn(θ) (Bloch disp rel)
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Three Regimes for Waves in Periodic Media

Consider a periodic medium with period ǫ << 1. Waves
with wavelength ℓ.

For long waves ℓ >> ǫ, the medium is approximated by
a homogenized medium which does not vary on the small
scale. The effective coefficients are computed as in the static
(elliptic) case.

The dispersion relation and group velocities are those of the
homogenized equations. For a second order scalar equation,
the dispersion relation is quadratic in frequency and wave
number.

If ℓ << ǫ, then from the point of view of the wave, the
medium is slowly varying and the approximations of stan-
dard geometric optics are appropriate. The group velocities
vary on the short scale ǫ.

We discuss the resonant case, ℓ ∼ ǫ. A principal interest is
that the dispersion relation can be very different from the
preceding regimes.
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Bloch Wave Packets

Fix θ, and λn(θ) 6= 0 a simple eigenvalue, and ω satisfying
the Bloch dispersion relation. ω and ψn are analytic in θ on
a neighborhood of θ.

For an ǫ-periodic medium, have exact plane waves of wave-
length ǫ,

e2πi(ω(θ)t+θ.x)/ǫ ψn(x/ǫ, θ).

Superposition yields wave packets,

∫

[0,1[N
e2πi(ω(θ)t+θ.x)/ǫ ψn(x/ǫ, θ) α

(θ − θ

ǫ

)

dθ, α ∈ C∞
0

Introduce ζ := (θ − θ)/ǫ. Change variable. Taylor of order
1 yields,

e2πi(ω(θ)t+θ.x)/ǫ ψn(x/ǫ, θ)

∫

[0,1[N
e2πζ.(x−Vt) α(ζ) dζ + O(ǫ),

V := −∇θω(θ) .

The leading term is

e2πi(ω(θ)t+θ.x)/ǫ ψn(x/ǫ, θ) a(x− Vt) .

A Bloch plane wave times a slowly varying envelope which is
transported at the group velocity V. This is a Bloch wave

packet. N.B. resonant scaling.
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Five Important Consequeces

1. Designer materials. Wave packets of wavelength ∼ ǫ
in an ǫ-periodic medium have a dispersion relation 4πω2 =
λn(θ) which does not resemble the dispersion relation of the
original problem.

Can engineer periodic materials with properties radically

different than those of the constituent materials.

The is not the case for the standard situation λ >> ǫ which
leads to homogenization and properties which are different
but not radically so.

2. Slow light For the original equations, group velocities
are bounded below by a strictly positive quantity.

For Bloch wave packets, one can have V = 0.

For example if λn(θ) is a value at the edge of a band. Then
λn has a max or min so V = ∇θλn vanishes.

Can construct photonic materials which radically slow light.
Challenge: completely optical computers.
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3. Forbidden temporal frequencies. Suppose that the
interval I is in a gap in the spectrum of −divA(x) grad .

If u(t, x) solves the ǫ-periodic wave equation. Then

∫ ∞

−∞

e−2πiτt/ǫ u(t, x) dt

vanishes for τ ∈ I. This is a forbidden region for the tempo-
ral Fourier transform.

If a wave packet from outside a large piece of ǫ-periodic
medium arrives with temporal frequency in the forbidden
region, it is totally reflected (to leading order).

4. Photonic crystal fibers. Using periodic materials,
large and therefore large capacity monomode optical fibers
have been constructed. This is important for the high energy
laser projects.
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5. Enhanced dispersion. The propagation for times t ∼
1/ǫ of wavelength ∼ ǫ wave packets in perfectly ǫ-periodic
media is to leading order,

e2πi(ω(θ)+θ.x)/ǫ ψn(x/ǫ, θ) a(ǫt, x− Vt)

with a(T , x) determined from its initial data by

c i ∂T a = ∇2
θω(θ)(∂x, ∂x)a .

The rank of ∇2
θω(θ) is generically equal to N . The decay of

wave packets is more rapid, ∼ t−N/2.

For constant coefficient divA grad , waves decay at the slower
rate t(1−N)/2.

From the fact that the hessian of the dispersion relation has
rank N − 1.

End of Pretalk
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Some Harder Problems

It is very hard to make perfectly or even nearly so, periodic
materials.

It is important to understand slightly nonperiodic materials.
In particular the impact of the ”impurities”.

Fourier and Bloch transforms are no help.

It is important to understand weak random perturbations of
periodic media.

For fibers and other applications, it is important to under-
stand propagations over long time intervals.

Here is the main result in that vein that we have proved.
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P ǫ(t, x, ∂t,x)uǫ :=
∂2uǫ

∂t2
− div (Aǫ grad uǫ) = 0

where Aǫ are oscillating coefficients of the form

Aǫ(x) = A0 (x/ǫ) + ǫ2A1 (t, x, x/ǫ) ,

The functions A0(y) and A1(t, x, y) are smooth symmetric
matrix valued functions on T

N
y and R

1+N ×T
N
y respectively.

For each α, j,

{

∂α
t,x,yρj , ∂

α
t,x,yAj

}

∈ L∞(R1+N
t,x × T

N
y ) .

There is a constant δ > 0 so that for all y,

A0(y) ≥ δ I > 0 .

The O(ǫ2) perturbations affect the leading term of the ap-
proximate solutions for t = O(1/ǫ).
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The Ray Average Hypothesis

Define

γ(t, x) :=

∫

TN
y

ψn(y)
(

− divy A1 (t, x, y) grady

)

ψn(y) dy .

First assume that the ray averages

γ̃(x) := lim
T→+∞

1

T

∫ T

0

γ(t, x+ Vt) dt

exist. This existence is equivalent to the fact that the solu-
tion of the transport equation

(

∂t + V.∂x)g = γ(t, x) − γ̃(x− Vt),

is sublinear in time.
We make the following “ray average hypothesis”. For all α,

the solution gα(t, x) of

(

∂t + V.∂x

)

gα = ∂α
t,x

(

γ(t, x)− γ̃(x−Vt)
)

, gα

∣

∣

t=0
= 0,

satisfies gα ∈ L∞([0,∞[×R
N).

This hypothesis is satisfied: i. If g is periodic with arbi-
trary period. ii. For almost all quasiperiodic γ and group
velocities V (small divisors).
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Bloch wave packet initial data,

uǫ(0, x) = b(x) e2πix.θ/ǫ ψn(x/ǫ, θ),

∂tu
ǫ(0, x) =

c(x)

ǫ
e2πix.θ/ǫ ψn(x/ǫ, θ).

ω± := the roots of the dispersion relation. S± := ω±t+ θx.

w̃±
0 (T , x, y) := a±(T , x) ψn(y, θ)

(

4πi∂T ∓ ∇2
θω

±(∂x, ∂x) +
γ̃(x)

ω±

)

a± = 0

a+|T =0 =
b(x)

2
+

c(x)

4πiω+
, a−|T =0 =

b(x)

2
−

c(x)

4πiω−
,

Theorem. Assume the ray average hypothesis for both

group velocities ±V, and, b, c ∈ H∞(RN ). Let

vǫ(t, x) :=
∑

±

e2πiS±(t,x)/ǫ w̃±
0 (ǫt, x± Vt, x/ǫ).

Then vǫ is an approximate solution with relative error O(ǫ).
Precisely, for any T > 0 the derivatives of order ≤ 1 satisfy,

sup
0≤t≤T/ǫ

sup
|α|≤1

∥

∥(ǫ ∂t,x)α
(

uǫ(t) − vǫ(t)
)
∥

∥

L2(RN )
≤ C ǫ .
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Four Remarks on the Proof

1. (WKB) A three term three scale approximate solution is
constructed,

vǫ(t, x) := e2πiS/ǫW ǫ(ǫt, x− Vt, x/ǫ) ,

W ǫ(T , x, y) :=

w0(T , x, y) + ǫ w1(T , x, y) + ǫ2w2(T , x, y) ,

Apply differential operator and set coefficients of powers of
ǫ equal to zero.

2. (JMR). An operator neither injective nor surjective ap-
pears. The kernel and range are complementary. Each equa-
tion is projected on the kernel and range.

The projection methods are new for this Bloch spectral con-
text.

The ”algebraic lemmas of gemetric optics” are particularly
interesting.

3. The construction of the first corrector in the proof fails
badly when the ray average hypothesis is not satisfied.
This may signal an interesting instability. Or it may mean
that there is a better ansatz. A voir.

4. The gradient estimate is easy. The L2 estimate is not.
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Ideas to Remember

Physical geometric optics is a two scale asymptotic limit
Mawell’s equations.

The derivation of rectilinear propagation is surprisingly easy.

For two scale problems it takes at least two term approxi-
mate solution to get a small residual.

For three scale problems it takes at least three term approx-
imate solution to get a small residual.

The (nonlinear) Schrödinger equations of laser physics are a
three scale limit of Maxwell.

Spectral gaps and total reflection for periodic media.

In the resonant regime ℓ ∼ ǫ anormal dispersion relations
occur (slow light).

The asymptotic theory in that regime is in good shape for
t ∼ 1. It is OK by still has challenges for the scale t ∼ 1/ǫ
of diffractive geometric optics.
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