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Introduction Navier – Stokes equations

Navier – Stokes equations
The equations of motion of an incompressible viscous fluid

∂tu + (u · ∇)u = ν∆u−∇p + f

∇ · u = 0 (1)

u(x, 0) = u0(x) , ∇ · u0 = 0 initial data

Forcing term f : ∇ · f = 0 Take f to be zero at present
Space-time domain

D = R3 (x, t) ∈ D× R+ := Q

Alternatively D = T3 and

(x, t) ∈ T3 × R+ = Q

A bounded smooth domain D ⊆ R3; we leave this open.
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Introduction Navier – Stokes equations

Weak solutions
The usual definition of a weak solution over t ∈ [0, T] is that:

1. Integrability conditions

u ∈ L∞([0, T]; L2(D)) ∩ L2([0, T]; Ḣ1(D)) ,

p ∈ L5/3(Q) (2)

2. The pair (u, p) is a distributional solution of (1)

3. The energy inequality is satisfied

1
2

∫

D
|u(x, t)|2 dx + ν

∫ t

0

∫

D
|∇u(x, s)|2 dxds ≤ 1

2

∫

D
|u0(x)|2 dx

(3)
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Introduction Navier – Stokes equations

The existence of weak solutions
Theorem (Leray (1934))
Given u0 ∈ L2(D) divergence free, then there exists at least one weak
solution to (1) globally in time. Weak solutions satisfy

u ∈ L∞t (L2
x)

as well as
u ∈ Ct(L2

x : weak topology)

A lot is known about such solutions, for example that

u ∈ Ls
t (L

p
x) ,

3
p

+
2
s

=
3
2

Uniqueness and global regularity are unknown
Walter Craig McMaster University
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Introduction Navier – Stokes equations

Fourier transforms
I The Fourier transform of u(x, t) exists a.e. t

û(k, t) =
1

2π3/2

∫
e−ik·x′u(x′, t) dx′

and û(·, t) ∈ L∞t (L2
x)

I The Fourier transform is smooth in t

Theorem
The function û(k, t) is C1 as a function of t for every k
(when D = T3 at least).

I Define the energy spectrum as the spherical integrals

E(κ, t) :=
1
V

∫

|k|=κ
|û(k, t)|2 dS(k) , 0 ≤ κ < +∞ (4)

where V is a characteristic unit volume.
Walter Craig McMaster University
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Power spectrum
I Plancherel’s identity

∫ ∞

0
E(κ, t) dκ = V‖u(·, t)‖2

L2

I Sobolev norms
∫ ∞

0
κ2E(κ, t) dκ = V‖∇u(·, t)‖2

L2

I dimensional analysis, where [∗] denotes dimension

[u] =
L
T

, [|û|2] =
L2(d+1)

T2 [ν] =
L2

T
[E(·, t)] =

L3

T2
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Introduction Navier – Stokes equations

Reynold’s number
There is a literature on the Reynold’s number defined in terms of the
energy spectrum

I Re := UL
ν dimensionless parameter

I Intrinsic Reynold’s number (Gammond & Gage)

Re1 :=
Λ
ηK

, Λ :=

∫∞
0 κ−1E(κ) dκ∫∞

0 E(κ) dκ
ηK :=

(ν3

ε

)1/4

for ε := 2ν
∫∞

0 κ2E(κ) dκ, the rate of energy dissipation
I Proposal for a mathematical Reynold’s number

Re2 :=
‖u‖Ḣ1/2

ν

in the light of the classical Fujita - Kato existence theorem
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Kolmogorov’s hypotheses

For high Reynolds number flows which are very turbulent,
Kolmogorov supposed:

I The small scale turbulent motions of a fluid are statistically
isotropic

I The statistics of these motions are determined by the two
parameters ν and ε
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Kolmogorov’s scaling law

I Prediction: For high Reynold’s number flows which exhibit fully
developed turbulence, the energy spectrum has universal
behavior

EK(κ) = C0ε
2/3κ−5/3 (5)

These are the unique exponents for which the dimensions match
In fact the exponents are independent of space dimension

I Considerable experimental and numerical evidence has been
garnered to support this conjecture.

I Goal: to give mathematically rigorous upper bounds on the range
of validity of the Kolmogorov scaling law
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SDSC simulation Turbulence Spectrum
by Chowasia, Donzis and Yeung
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Introduction Navier – Stokes equations

Estimates on weak solutions

I The energy inequality (3) can be viewed as the statement that the
ball BR(0) ⊆ L2

x is an invariant set for Navier – Stokes flow

u0(·) ∈ BR(0) =⇒ ∀t > 0 , u(·, t) ∈ BR(0)

I Another invariant set. Define
A := {(û(k))k∈R3 : |k||û(k)| < R1} ∩ BR(0)

Theorem (A. Biryuk (2003))
If R2 < νR1 then A is an invariant set for Navier – Stokes flow.

Proof given at end of talk if there is time

Walter Craig McMaster University
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Introduction Navier – Stokes equations

Global estimates on weak solutions

I Bounds on L∞t (L∞k (Fu)), supposing that the initial data lies in
the set A, then for all k ∈ R3,

sup
t≥0

|û(k, t)| ≤ R1

|k| (6)

I Time average quantities obey better estimates:

Corollary
For all k ∈ R3 and all T ≥ 0, then ν

∫ T
0 |û(k, s)|2 ds ≤ R2

1
|k|4

I The quantity supt ‖|k|û(·, t)‖L∞ scales like the BV norm
supt ‖∂xu(·, t)‖L1 , for which there are no known bounds.
P. Constantin (1992) has a global bound on supt ‖∇x × u(·, t)‖L1

Walter Craig McMaster University
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I The quantity supt ‖|k|û(·, t)‖L∞ scales like the BV norm
supt ‖∂xu(·, t)‖L1 , for which there are no known bounds.
P. Constantin (1992) has a global bound on supt ‖∇x × u(·, t)‖L1

Walter Craig McMaster University

Bounds on Kolmogorov spectra



Introduction Navier – Stokes equations

Global estimates on weak solutions

I Bounds on L∞t (L∞k (Fu)), supposing that the initial data lies in
the set A, then for all k ∈ R3,

sup
t≥0
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Estimates on spectra
Proposition (1)
The spectrum of a weak solution with initial data u0 ∈ A satisfies a
global upper bound

E(κ, t) =
1
V

∫

|k|=κ
|û(k, t)|2 dS(k) ≤ R2

1
Vκ2 4πκ2 =

4πR2
1

V

Proposition (2)
Time averages of energy spectra have a uniform decay rate. Weak
solutions with initial data u0 ∈ A satisfy

1
T

∫ T

0
E(κ, t) dt =

1
VT

∫ T

0

∫

|k|=κ
|û(k, t)|2 dS(k)dt ≤ 4πκ2

T
R2

1
νVκ4 = O(κ−2)
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rate of decay

How does the energy spectrum of a solution compare to the
Kolmogorov prediction.

Theorem
The exponent 2 is larger than 5/3.

Is this a problem with the theory?

I One resolution could be that Navier – Stokes flows which exhibit
spectral behavior like the Kolmogorov law are in the support of a
probability measure P on L2(D)-divergence-free.

I And that for all R, R1 then suppP ∩ A = ∅.
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Better resolution of this dilemma
Bounds on the inertial range where this spectral behavior is manifest

Theorem
The upper and lower bounds for the inertial range [κ1, κ2] over which
the Kolmogorov spectral function EK does not violate our estimates

κ1 =
( C0V

4πR1

)3/5
ε2/5 (7)

κ2 =
( R2

1
νC0VT

)3 1
ε2 (8)

Maximum time for which this behavior persists is T0 : κ1 = κ2(T)

T0 =
R11/5

1

νε4/5

( 4π

C6
0V6

)1/5
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Comparison with the classical quantities

I Kolmogorov lengthscale ηK :=
(
ν3/ε

)1/4

2π

ηK
= 2π

( ε

ν3

)1/4
< κ2 =

( R2
1

νC0VT

)3 1
ε2

I Kolmogorov timescale τK :=
(

ν
ε

)1/2

τK =
(ν

ε

)1/2
<< T0 =

R11/5
1

νε4/5

( 4π

(C0V)6

)1/5

This is as it should, since these two times signify different things
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Comparison with a Navier – Stokes velocity field

there can be various definitions of proximity to ûK(k) ' ε1/3|k|11/6

I Definition 1: ‖uK − u(·, t)‖L2
x
≤ C1.

Since ûK 6∈ L2 this is not a satisfactory criterion.
I Dyadic decomposition u =

∑
j ∆ju with support

supp(∆̂ju(k)) ⊆ Aj

where Aj := {2j−1 < |k| < 2j+1}.

Definition 2: ‖∆j(u− uK)‖L1211j/3 ≤ C2 for all j in the range
log2(κ1) ≤ j ≤ log2(κ2)

Walter Craig McMaster University
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continued comparison
I There is the question as to whether E(κ, t) has spectral behavior

for individual solutions, or does it hold in an average sense, over
a statistical ensemble of solutions with probability measure P.

I Therefore study the ensemble averages

〈E(κ, t)〉 :=
∫

|k|=κ
〈|û(k, t)|2〉 dS(k)

Definition 3: Use Definition 2 for ensemble averages of
solutions.

I In fact P should be ergodic with regard to NS flow, so that
asymptotically the P average should approximate the time
average

〈E(κ, t)〉 ' 1
T

∫ T

0
E(κ, t) dt
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Theorem (Bounds on Kolmogorov spectra)
In order that u(x, t) exhibit Kolmogorov-like behavior of its spectral
energy function, in either of the senses of Definition 2 or Definition 3
over an inertial range [κ1, κ2], then

κ1 , κ2 , T0

must satisfy the above three relations, up to a constant.
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proof of the L∞t (L∞k (Fu)) estimate
I For fixed k the field û(k) ∈ C2

k ⊆ C3

Because of incompressibility k · û(k) = 0
Suppose that ‖u(·)‖L2 ≤ R

I The Fourier transform satisfies

∂tû(k) = −ν|k|2û(k)− ikΠk

∫
û(k − k1) · û(k1) dk1 + f̂ (k, t)

:= X(u)k

I Consider the vector field X(u) when |û(k)| = R1/|k|. Then

re(û(k) · X(u)k) < −ν|k|2(R1/|k|)2 + (R1/|k|)|k|R2 + |f̂ |(R1/|k|)
which is negative when R2 + |f̂ (k)|/|k| < νR1
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proof of corollary

I A fact about the vector field X(û) is that solutions obey

|û(k, T)|2 − |û0(k)|2 + 2ν

∫ T

0
|k|2|û(k, t)|2 dt

= 2im[
∫ T

0
û(k) ·

∫
û(k − k1) · k1û(k1)) dk1dt]

(setting f = 0 for simplicity)
I Writing I2(k) = (2ν)3

∫ T
0 |k|4|û(k, t)|2 dt

this gives an inequality

I2(k)− 2R2I(k)− (2νR1)2 ≤ 0
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Thank you
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