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e
Abstract

» The Kolmogorov & Obukov laws for isotropic turbulence
» A new estimate on Leray weak solutions
» Estimates on Kolmogorov spectra

» Restrictions on the spectral behavior of weak solutions
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Navier - Stokes equations

Navier — Stokes equations
The equations of motion of an incompressible viscous fluid
Ou+ (u-Vu=vAu—Vp+f
Vou=0 ey
u(x,0) =up(x), V-up=0 initial data

Forcing termf : V- f =0 Take f to be zero at present

Walter Craig McMaster University

Bounds on Kolmogorov spectra



Navier - Stokes equations

Navier — Stokes equations
The equations of motion of an incompressible viscous fluid
Ou+ (u-Vu=vAu—Vp+f
Vou=0 ey
u(x,0) =up(x), V-up=0 initial data

Forcing termf : V- f =0 Take f to be zero at present
Space-time domain

D =R} (x,t) eDxRT:=Q

Walter Craig McMaster University

Bounds on Kolmogorov spectra



Navier - Stokes equations

Navier — Stokes equations
The equations of motion of an incompressible viscous fluid
Ou+ (u-Vu=vAu—Vp+f
Vou=0 ey
u(x,0) =up(x), V-up=0 initial data

Forcing termf : V- f =0 Take f to be zero at present
Space-time domain

D =R} (x,t) eDxRT:=Q

Alternatively D = T° and
(x,f) eT* xRt =Q

Walter Craig McMaster University

Bounds on Kolmogorov spectra



Navier - Stokes equations

Navier — Stokes equations
The equations of motion of an incompressible viscous fluid

Ou+ (u-Vu=vAu—Vp+f
V-u=0 (D
u(x,0) =up(x), V-up=0 initial data

Forcing termf : V- f =0 Take f to be zero at present
Space-time domain

D =R} (x,t) eDxRT:=Q

Alternatively D = T° and
(x,f) eT* xRt =Q

A bounded smooth domain D C R3; we leave this open.
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Navier - Stokes equations

Weak solutions
The usual definition of a weak solution over € [0, 7] is that:

1. Integrability conditions

u € L=([0,T]; L*(D)) N L*([0, T); H' (D)),
peL3(Q) )

Walter Craig McMaster University

Bounds on Kolmogorov spectra



Navier - Stokes equations

Weak solutions
The usual definition of a weak solution over € [0, 7] is that:

1. Integrability conditions

u € L=([0,T]; L*(D)) N L*([0, T); H' (D)),
peL3(Q) )

2. The pair (u, p) is a distributional solution of (1)

Walter Craig McMaster University

Bounds on Kolmogorov spectra



Navier - Stokes equations

Weak solutions
The usual definition of a weak solution over € [0, 7] is that:

1. Integrability conditions

w e 1(0,T}; L3(D)) N 120, T); (D)
peL3(Q) 2)
2. The pair (u, p) is a distributional solution of (1)

3. The energy inequality is satisfied

é/u(x,t)\zdx—i—u/ /Vu(x,s)\zdxdsgé/\uo(x)lzdx
Jp Jo Jp Jp 3)
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Navier - Stokes equations

The existence of weak solutions
Theorem (Leray (1934))

Given uy € L*(D) divergence free, then there exists at least one weak
solution to (1) globally in time. Weak solutions satisfy

u € LX(L?)
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The existence of weak solutions
Theorem (Leray (1934))

Given uy € L*(D) divergence free, then there exists at least one weak
solution to (1) globally in time. Weak solutions satisfy

u € LX(L?)

as well as
u € Cy(L* : weak topology)

A lot is known about such solutions, for example that
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Navier - Stokes equations

The existence of weak solutions
Theorem (Leray (1934))

Given uy € L*(D) divergence free, then there exists at least one weak
solution to (1) globally in time. Weak solutions satisfy

u € LX(L?)

as well as
u € Cy(L* : weak topology)

A lot is known about such solutions, for example that
3 2 3

e Li(I? -4 —-==
u f(,\)? p+§ 2

Uniqueness and global regularity are unknown
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Navier - Stokes equations

Fourier transforms

» The Fourier transform of u(x, 1) exists a.e. t

1 o
l:l(k, f) = W / eilkvx M(X/7t) dx’

and ii(-, 1) € LX(L2)
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Fourier transforms

» The Fourier transform of u(x, 1) exists a.e. t

1 o
l:l(k, f) = W / eilkvx M(X/7t) dx’

and ii(-, 1) € LX(L2)
» The Fourier transform is smooth in ¢
Theorem
The function ii(k, ) is C' as a function of t for every k
(When D = T° at least).
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Navier - Stokes equations

Fourier transforms

» The Fourier transform of u(x, 1) exists a.e. t

1 o
l:l(k, f) = m / eilk'x M(X/7t) dx’

and ii(-, 1) € LX(L2)
» The Fourier transform is smooth in ¢
Theorem
The function ii(k, ) is C' as a function of t for every k
(when D = T° at least).
» Define the energy spectrum as the spherical integrals

E(k,t) := ‘1//](_ in(k, N*dS(k), 0<k<+oo (4)

where V is a characteristic unit volume.
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Power spectrum

» Plancherel’s identity

| Bt @ = Vit 0

0
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Power spectrum

» Plancherel’s identity

| Bt @ = Vit 0

0

» Sobolev norms

[ WG = VIut, )
JO
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Navier - Stokes equations

Power spectrum

» Plancherel’s identity

| Bt @ = Vit 0

0

» Sobolev norms

/ E(k,t)dk = V||Vu(-, 1)
J0

» dimensional analysis, where [*| denotes dimension

L . LZ(d+1) LZ L3
W ==, [P = =— [E(,0)]=
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Navier - Stokes equations

Reynold’s number

There is a literature on the Reynold’s number defined in terms of the
energy spectrum

» Re := % dimensionless parameter
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energy spectrum

» Re := % dimensionless parameter

» Intrinsic Reynold’s number (Gammond & Gage)
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Navier - Stokes equations

Reynold’s number

There is a literature on the Reynold’s number defined in terms of the
energy spectrum

» Re := % dimensionless parameter

» Intrinsic Reynold’s number (Gammond & Gage)

A I k) dk V3 1/4
Re; := — | A= —0 = —
Tk I E(rk) dr K ( c )

fore :=2v fooo x”E (k) dr, the rate of energy dissipation
» Proposal for a mathematical Reynold’s number

ey oz Il

in the light of the classical Fujita - Kato existence theorem
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Navier - Stokes equations

Kolmogorov’s hypotheses

For high Reynolds number flows which are very turbulent,
Kolmogorov supposed:

» The small scale turbulent motions of a fluid are statistically
isotropic
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Navier - Stokes equations

Kolmogorov’s hypotheses

For high Reynolds number flows which are very turbulent,
Kolmogorov supposed:

» The small scale turbulent motions of a fluid are statistically
isotropic

» The statistics of these motions are determined by the two
parameters v and
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Navier - Stokes equations

Kolmogorov’s scaling law

» Prediction: For high Reynold’s number flows which exhibit fully
developed turbulence, the energy spectrum has universal
behavior

Ex(r) = Coe?Pr™/3 (5)

These are the unique exponents for which the dimensions match
In fact the exponents are independent of space dimension
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Ex(r) = Coe?Pr™/3 (5)

These are the unique exponents for which the dimensions match
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» Considerable experimental and numerical evidence has been
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Navier - Stokes equations

Kolmogorov’s scaling law

» Prediction: For high Reynold’s number flows which exhibit fully
developed turbulence, the energy spectrum has universal
behavior

Ex(r) = Coe?Pr™/3 (5)

These are the unique exponents for which the dimensions match
In fact the exponents are independent of space dimension

» Considerable experimental and numerical evidence has been
garnered to support this conjecture.

» Goal: to give mathematically rigorous upper bounds on the range
of validity of the Kolmogorov scaling law
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Navier - Stokes equations

SDSC simulation Turbulence Spectrum
by Chowasia, Donzis and Yeung
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Navier - Stokes equations

Estimates on weak solutions

» The energy inequality (3) can be viewed as the statement that the
ball Bz(0) C L? is an invariant set for Navier — Stokes flow

up(-) € BR(0) = Vt>0,u(-t) € Bg(0)
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Navier - Stokes equations

Estimates on weak solutions

» The energy inequality (3) can be viewed as the statement that the
ball Bz(0) C L? is an invariant set for Navier — Stokes flow

up(-) € BR(0) == Vt>0,u(-,1) € Bg(0)

» Another invariant set. Define
A= {(a(k))rers : |k||a(k)| < Ri} N Br(0)

Theorem (A. Biryuk (2003))
IfR> < UR| then A is an invariant set for Navier — Stokes flow.

Proof given at end of talk if there is time
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Navier - Stokes equations

Global estimates on weak solutions

» Bounds on L°(L°(Fu)), supposing that the initial data lies in
the set A, then for all k € R,

R
sup |i(k, 1)| < =
>0 ‘k’

(6)
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Global estimates on weak solutions

» Bounds on L°(L°(Fu)), supposing that the initial data lies in
the set A, then for all k € R,
R

sup |iu(k,1)| <
Qg\( )| K]

(6)

» Time average quantities obey better estimates:

Corollary

Forallk € R? and all T > 0, then V]OT lit(k,s)|* ds < Ri

[K[*
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Navier - Stokes equations

Global estimates on weak solutions

» Bounds on L°(L°(Fu)), supposing that the initial data lies in
the set A, then for all k € R,

R

sup |i(k,1)| < (6)

>0 ‘k’

» Time average quantities obey better estimates:

Corollary

Forallk € R and all T > 0, then V]OT lit(k, s)|* ds < L

[kJ*
» The quantity sup, |||k|i(-, )|/~ scales like the BV norm
sup, ||Oxu(-, )| ;1, for which there are no known bounds.
P. Constantin (1992) has a global bound on sup, ||V, x u(-, )1
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Navier - Stokes equations

Estimates on spectra
Proposition (1)

The spectrum of a weak solution with initial data uy € A satisfies a
global upper bound

R? AT R?
E(k,1) = ‘l/ / lit(k, 1)|> dS(k) < V71247m2 _ %
Jk|=k K

Proposition (2)
Time averages of energy spectra have a uniform decay rate. Weak
solutions with initial data uy € A satisfy

1 T 4 2 R2
/ E(k, // a(k, )2 dS(k)dr < - ZL — O(k7?)
T Jo |k|=r T vVk
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Navier - Stokes equations

rate of decay

How does the energy spectrum of a solution compare to the
Kolmogorov prediction.
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How does the energy spectrum of a solution compare to the
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Theorem
The exponent 2 is larger than 5 /3.
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Navier - Stokes equations

rate of decay

How does the energy spectrum of a solution compare to the
Kolmogorov prediction.

Theorem
The exponent 2 is larger than 5 /3.
Is this a problem with the theory?
» One resolution could be that Navier — Stokes flows which exhibit

spectral behavior like the Kolmogorov law are in the support of a
probability measure P on L?(D)-divergence-free.

» And that for all R, R then suppP N A = ().
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Navier - Stokes equations

Better resolution of this dilemma
Bounds on the inertial range where this spectral behavior is manifest
Theorem

The upper and lower bounds for the inertial range [, k| over which
the Kolmogorov spectral function Ex does not violate our estimates

CoV \3/5 45
— 7
Al (47TR1) < ( )
R? \31
_ L 8
2 (VCOVT) ) ®)

Maximum time for which this behavior persists is T : £y = ro(T)

R:I/S

. ( 4 )1/5
O vets e
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Navier - Stokes equations

Comparison with the classical quantities

» Kolmogorov lengthscale ng := (u3/e)]/4

27 ) ( € )1/4 - ( R% )3 1
— =21 — Ky = —
K 3 2= \veyvr) 2

e
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Navier - Stokes equations

Comparison with the classical quantities

» Kolmogorov lengthscale ng := (u3/e)]/4

27 2(5)1/4< ( R% )31
— =21 — Ky = —
K 3 2= \veyvr) 2

e

. 1/2
» Kolmogorov timescale 7 := (g) /

1/5

VN2 R 4 1/5
“*@)<K%*MWQ@w0

This is as it should, since these two times signify different things
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Navier - Stokes equations

Comparison with a Navier — Stokes velocity field

there can be various definitions of proximity to itg (k) ~ &'/3|k|!1/¢

» Definition 1: [jux — u(-, 1) < Cy.
Since ity ¢ L this is not a satisfactory criterion.
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Navier - Stokes equations

Comparison with a Navier — Stokes velocity field

there can be various definitions of proximity to itg (k) ~ &'/3|k|!1/¢

» Dyadic decomposition u = Z; Aju with support
supp(Aju(k)) € A;

where A; := {271 < [k| < 21}

Definition 2: ||A;(u — ug)|;12'V/3 < C, for all j in the range
log, (k1) < < logy(k2)

Walter Craig McMaster University
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Navier - Stokes equations

continued comparison

» There is the question as to whether E(x, 1) has spectral behavior
for individual solutions, or does it hold in an average sense, over
a statistical ensemble of solutions with probability measure P.
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continued comparison

» There is the question as to whether E(x, 1) has spectral behavior
for individual solutions, or does it hold in an average sense, over
a statistical ensemble of solutions with probability measure P.

» Therefore study the ensemble averages

0= [ itk 0P aste)

Definition 3: Use Definition 2 for ensemble averages of
solutions.
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Navier - Stokes equations

continued comparison

» There is the question as to whether E(x, 1) has spectral behavior
for individual solutions, or does it hold in an average sense, over
a statistical ensemble of solutions with probability measure P.

» Therefore study the ensemble averages

0= [ itk 0P aste)

Definition 3: Use Definition 2 for ensemble averages of
solutions.

» In fact P should be ergodic with regard to NS flow, so that
asymptotically the P average should approximate the time
average

T
(E(k,1)) ~ ;/0 E(k,t)dt

Walter Craig McMaster University
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Navier - Stokes equations

Theorem (Bounds on Kolmogorov spectra)

In order that u(x, t) exhibit Kolmogorov-like behavior of its spectral
energy function, in either of the senses of Definition 2 or Definition 3
over an inertial range |k, k2], then

K1 %) T()

) )

must satisfy the above three relations, up to a constant.
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Navier - Stokes equations

proof of the L°(L;°(Fu)) estimate

» For fixed k the field ii(k) € C; C C?
Because of incompressibility & - it(k) = 0
Suppose that [[u(-)||;» < R
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proof of the L°(L;°(Fu)) estimate

» For fixed k the field ii(k) € C; C C?
Because of incompressibility & - it(k) = 0
Suppose that [[u(-)||;» < R

» The Fourier transform satisfies

@ft(k) = —U‘k’zlﬂk) — kI, /ﬁ(k — k]) . l:t(k])dkl +f(k, l)
= X(u)
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Navier - Stokes equations

proof of the L°(L;°(Fu)) estimate

» For fixed k the field ii(k) € C; C C?
Because of incompressibility & - it(k) = 0
Suppose that [[u(-)||;» < R

» The Fourier transform satisfies

@ft(k) = —U‘k’zlﬂk) — kI, /ﬁ(k — k]) . l:t(k])dkl +f(k, l)
= X(u)

» Consider the vector field X («) when |i(k)| = R;/|k|. Then
re(i(k) - X(u)e) < —vIkI*(Ri/Ik[)* + (R /|| kIR + || (R1 /|k])

which is negative when R + |f (k)|/|k| < vR,
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Navier - Stokes equations

proof of corollary

» A fact about the vector field X (i) is that solutions obey
T
ik ) i@ +2v [ kPlak, 0 d
0

= 2im[/OT (k) - / ik — ky) - kyir(ky)) dkydt]

(setting f = 0O for simplicity)
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Navier - Stokes equations

proof of corollary

» A fact about the vector field X (i) is that solutions obey
T
ik ) i@ +2v [ kPlak, 0 d
0

= 2im[/OT (k) - / ik — ky) - kyir(ky)) dkydt]

(setting f = 0O for simplicity)
> Writing 1%(k) = (2v)° [ [k|*|it(k, 1) | dr
this gives an inequality

(k) — 2R*I(k) — (2vR)* < 0
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Navier - Stokes equations

Thank you
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