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The flutter wind speeds obtained in the N–S simulation are also plotted and compared in
Figure 8(b) (m ¼ 0 "39). The flutter speeds calculated by these two methods are in good
agreement. The computation time for potential flow analysis is very short, about 10 s per
sheet using a personal computer (200MHz Intel Pentium MMX Processor). The
parametric study that follows was conducted using potential flow analysis.

Figure 9 shows the relationship between U#
S and m for the parametric and experimental

analyses. Aerodynamic drag along the sheet surface was added to the potential flow
analysis. The results for CD ¼ 0 "0, 0 " 1 and 0 " 2 are shown. According to Fairthorne
(1930), the drag coefficient of flag paper is approximately 0 " 1 at m ¼ 0 "1. Therefore, the
CD ¼ 0 "1 results are considered to correspond to actual conditions. The range of primary
flutter with CD ¼ 0 "0 and 0 " 1 is shown in the lower part of Figure 9. Qualitatively, U#

S

tends to decrease with increasing m, which is in agreement with the experiment results.
However, there is a considerable quantitative discrepancy between the results of the
potential flow analysis and the experiment. The effect of CD is not large enough to account
for the magnitude of the discrepancy. Four mechanisms may be considered as contributing
to this discrepancy: the effect of the aspect ratio of the sheet, span-wise deformation,
stabilization due to deformation of the sheet surface by wind pressure, and the increase in
the rigidity during paper flutter compared to the static value obtained in the tensile test
and subsequently used in the formula for dimensionless flutter speed. The last mechanism
was determined from observations in natural frequency tests using small sheets of paper in
a vacuum vessel. However, the cause was not confirmed in the present study, and remains
to be investigated.

The calculated solutions from the four potential theory approaches (methods 2, 5, 6,
and 7) are compared in Figure 9. The solutions by methods 6 and 7 agree well in the range
0 "3 $ m $ 1, and the solutions by methods 2, 5, and 7 agree well for m > 1. These results
confirm the reliability of the method proposed in this study (method 7) over a wide range
of mass ratio.
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Figure 9. Relationship between dimensionless flutter speed and mass ratio. Present experiment: *, flag-type
paper;*, long-type paper; 4, elastic sheet; other experiment:}, Huang (1995);&, Kornecki et al. (1976). Present
theory: very thick black line, CD ¼ 0; medium black line, CD ¼ 0 "1; ordinary line, CD ¼ 0 "2; other theories: +,

Kornecki et al. (1976), }, Huang (1995); thick gray line, Guo & Pa.ııdoussis (2000).
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• [Ref] Watanabe, Isogai, Suzuki & Sugihara, J. Fluids Struct. (2002)
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Equation of Motion

• Linearised Euler-Bernoulli beam equation
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Galerkin Method

• Galerkin–Fourier expansion

• PDE            eigenvalue problem

0 0.2 0.4 0.6 0.8 1
!2

!1

0

1

2

0 0.2 0.4 0.6 0.8 1
!2

!1

0

1

2

0 0.2 0.4 0.6 0.8 1
!2

!1

0

1

2

x/L

y1

y2

y3

(
−ρω2I + EIK − P (ω)

)
A = 0

y(x, t) =
∑

n

Anyn(x)eiωt

ρ∂2

t
y + EI∂4

x
y = ∆P (x)



Flow Around the Plate



Potential Flow

• Perturbation potential: 

• Perturbation pressure (Bernoulli equation)
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Inverse Problem

• Green’s representation theorem 

• Inverse problem (Fredholm equation of 1st kind)
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Vorticity Distribution

• Symmetry of perturbation potential

• Vorticity distribution

• Inverse problem for vorticity
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Oscillating Plate

• Inversion formula (Söhngen, 1939)

• Particular case:

•       is the circulation around the plate:
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• Flow with no circulation

• Flow with circulation                       

• Wake behind the plate advected at velocity 

• Using Kutta hypothesis
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3D Flow?



• Inverse problem (Fredholm equation of 1st kind)

• Expansion in powers of      or          (lifting-line theory)
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Singularities in the Pressure Field

• Leading-edge singularity

• Trailing-edge and side edges
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Vorticity Distribution

• Vorticity lines

• Vortex lattice method
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• Assuming

• The pressure along     can be determined
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Results of the Stability Analysis



• Parameters: 

• Dimensionless numbers

Flutter Modes
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Shape of Flutter Modes
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Unstable modes (50x slower)

• mode 2

• mode 3
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• Mass ratio: 
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Stability curve

• Experiments for                 and
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The flutter wind speeds obtained in the N–S simulation are also plotted and compared in
Figure 8(b) (m ¼ 0 "39). The flutter speeds calculated by these two methods are in good
agreement. The computation time for potential flow analysis is very short, about 10 s per
sheet using a personal computer (200MHz Intel Pentium MMX Processor). The
parametric study that follows was conducted using potential flow analysis.

Figure 9 shows the relationship between U#
S and m for the parametric and experimental

analyses. Aerodynamic drag along the sheet surface was added to the potential flow
analysis. The results for CD ¼ 0 "0, 0 " 1 and 0 " 2 are shown. According to Fairthorne
(1930), the drag coefficient of flag paper is approximately 0 " 1 at m ¼ 0 "1. Therefore, the
CD ¼ 0 "1 results are considered to correspond to actual conditions. The range of primary
flutter with CD ¼ 0 "0 and 0 " 1 is shown in the lower part of Figure 9. Qualitatively, U#

S

tends to decrease with increasing m, which is in agreement with the experiment results.
However, there is a considerable quantitative discrepancy between the results of the
potential flow analysis and the experiment. The effect of CD is not large enough to account
for the magnitude of the discrepancy. Four mechanisms may be considered as contributing
to this discrepancy: the effect of the aspect ratio of the sheet, span-wise deformation,
stabilization due to deformation of the sheet surface by wind pressure, and the increase in
the rigidity during paper flutter compared to the static value obtained in the tensile test
and subsequently used in the formula for dimensionless flutter speed. The last mechanism
was determined from observations in natural frequency tests using small sheets of paper in
a vacuum vessel. However, the cause was not confirmed in the present study, and remains
to be investigated.

The calculated solutions from the four potential theory approaches (methods 2, 5, 6,
and 7) are compared in Figure 9. The solutions by methods 6 and 7 agree well in the range
0 "3 $ m $ 1, and the solutions by methods 2, 5, and 7 agree well for m > 1. These results
confirm the reliability of the method proposed in this study (method 7) over a wide range
of mass ratio.
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Figure 9. Relationship between dimensionless flutter speed and mass ratio. Present experiment: *, flag-type
paper;*, long-type paper; 4, elastic sheet; other experiment:}, Huang (1995);&, Kornecki et al. (1976). Present
theory: very thick black line, CD ¼ 0; medium black line, CD ¼ 0 "1; ordinary line, CD ¼ 0 "2; other theories: +,

Kornecki et al. (1976), }, Huang (1995); thick gray line, Guo & Pa.ııdoussis (2000).
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Conclusion

• Flow inherently singular

• Good agreement for 1D mode + 3D flow

• Importance of 3D effects
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