
Good reasons to study Euler equation.C’est un bon sujet pour retraité cela
correspond à des phénomènes macroscopiques étudiés depuis 250 ans et cela
contient presque toutes les difficultés du non linéaire. Applications often
correspond to very large Reynolds number =ratio between the strenght of the
non linear effects and the strenght of the linear viscous effects.
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A theorem valid for any finite Reynolds number should be in some cases, in
particular in the absence of boundary, compatible with results concerning
infinite Reynolds number. In fact it is the case Reynolds=∞ which drive other
results. The parabolic structure and the scalings does not carry enough
information to deal with the 3d Navier-Stokes equations. Simple examples with
the same scalings but with no conservation of energy may (concerning
regularity) exhibit very different behaviour.



1. Hamilton Jacobi type equation

∂tφ− ν∆φ +
1

2
|∇φ|2 = 0 in Ω× IR+

t ,

∂t∇φ− ν∆∇φ +∇φ ·∇(∇φ) = 0 in Ω× IR+
t

φ(x, t) = 0 for x ∈ ∂Ω , φ(.,0) = φ0(.) ∈ L∞(Ω) ,

For ν > 0 global smooth solution. May become singular (with shocks ) for
ν = 0 .



2. Montgomery-Smith example :

∂tu− ν∆Du +
1

2
(−∆)

1
2u2 = 0 in Ω× IR+

t ,

u(x, t) = 0 for x ∈ ∂Ω , u(.,0) = u0(.) ∈ L∞(Ω) ,∫

Ω
u0(x, t)φ1(x)dx = −m(t) < 0−∆φ1 = λ1φ1 , φ1(x) ≥ 0

d

dt

∫

Ω
u(x, t)φ1(x)dx + νλ1

∫

Ω
u(x, t)φ1(x)dx = −

√
λ1

2

∫

Ω
u(x, t)2φ1(x)dx .

m(t) = −
∫

Ω
u(x, t)φ1(x)dx

(
∫

u(x, t)φ1(x)dx)2 ≤
∫

Ω
u(x, t)2φ1(x)dx

∫

Ω
φ1(x)dx

dm

dt
+ νλ1m ≥

√
λ1

∫
Ω φ1(x)dx

2
m2 , m(0) >

2ν
√

λ1∫
Ω φ1(x)dx

⇒ Blow up



The above example has been introduced with Ω = IR3 by Montgomery-Smith
under the name of “cheap Navier-Stokes equations" with the purpose of
underlying the role of the conservation of energy (which is not present in the
above examples) in the Navier-Stokes dynamic. His proof shows that the same
blow up property may appear in any space dimension for the solution of the
“cheap hyper viscosity equations"

∂tu + ν(−∆)mu +
1

2
|∇|u2 = 0

On the other hand one should observe that the simple proof given above do not
applies to the "cheap hyperviscosity" in a bounded domain with convenient
boundary conditions. The reason is that there may be no eigenvector of
(−∆)m with a constant sign.



∂tu(x, t) + u(x, t) ·∇xu(x, t)− ν∆u(x, t) = ∇xp(x, t) ∇x · u(x, t) = 0 .

∂tω(x, t) + u(x, t) ·∇xω(x, t) = ω(x, t) ·∇xu(x, t)

u · n = 0 and νu(, t) = 0 , on ∂Ω
1

2

d

dt

∫
|u(x, t)|2dx + ν

∫

Ω
|∇xu(x, t)|2dx ≤ 0 energy estimate

ω = ∇∧ u -→ ∇xu Zero order pdo

For ν = 0 existence of a smooth solution for finite time with initial data in C1,α

or Hs , s ≥ n
2 + 1 . This goes back to Lichtenstein based on the comparison

with the Riccati equation and with no use of energy estimate.

y′ ≤ Cy
3
2 ; y = ||u||2Hs



Importance of Energy estimate :

Blow up for some solutions of infinite energy in (R2/L)2 ×R Constantin

u = (u1(x1, x2, t), u2(x1, x2, t), x3γ(x1, x2, t)) = (ũ, x3γ)

∇x · u = 0⇒ ∇x1,x2ũ + γ = 0

⇒ ∂t∇∧ ũ + ũ∇∧ ũ = γ∇x ∧ ũ

vertical component ⇒ ∂tγ + ũ∇γ = −γ2 + I(t)

x1, x2 peridodicity ⇒ I(t) =
2

L2

∫

(R2/L)2
(γ(x1, x2, t))2dx1dx2

A nice Ricatti equation :

⇒ ∂tγ + ũ∇γ = −γ2 +
2

L2

∫

(R2/L)2
(γ(x1, x2, t))2dx1dx2



Instability above the Hs , s > n/2 + 1 threshold : In W1,p for all 1 < p ≤ ∞
Exemple on the Torus with pressure less fluid :

(u1(x2),0, u3(x1 − tu1(x2), x2))

∂x2u3(x1, x2,0) = ∂X2
u3(x1 − tu1(x2), x2))

−t∂X1
u3(x1 − tu1(x2), x2))∂x2u1(x2)

This give examples of unstable solutions but in the mean time No proof of
existence of solution for the Cauchy problem with initial data below Hs No
existence proof concerning weak solutions. In 2d

ω ·∇xu = 0⇒ ∂tω + u ·∇xω = 0 (1)

⇒ Existence of weak solutions with initial data
ω(x,0) = ω0(x) ∈ Lp1 < p ≤ ∞ or for ω0 a signed measure (Delors).
Uniqueness for ω0 ∈ L∞ (Youdovitch)



Examples in 2d and 3d of very bad solutions u ∈ L∞(IRt, L2(IRn) with space
time compact support ! ! Constructed by accumulating oscillations (explicit
construction by Scheffer and Shnirelman) less explicit uses first plane waves
solution (as Luc Tartar) then sum of plane waves and finally Baire theorem.

Theorem For a any bounded open domain O ⊂ IRn
x × IRt there exists a

solution (u, p) ∈ L∞(IRn
x × IRt) with

x ∈ O ⇒ |u(x, t)| = 1 , x /∈ O ⇒ |u(x, t)| = 0

This solution is "strong" there exists smooth uk,∇xuk = 0 converging in Lp to
(u, p) with

∂tuk + P (uk ·∇xuk)→ 0 in H−1, P Leray projector



To avoid the above examples and the lack of existence of smooth solution one
may use (PL Lions) dissipative solutions :

Let u(x, t) be a smooth solution of the Euler equation in Ω and w(x, t) any
smooth, tangent to the boundary, divergence free, vector field then with
E(v) = ∂tw + P (w ·∇xw) one has

∂tu +∇x(u⊗ u) +∇xp = 0

∂tw +∇x(w ⊗ w) +∇xq = E(w)

d|u− w|2

dt
+ 2(D(w)(u− w), (u− w)) = 2(E(w), u− w)

Or by integration :

|u(t)− w(t)|2 ≤ e
∫ t
0 2||D(w)||∞(s)ds|u(0)− w(0)|2

+2
∫ t

0
e
∫ t
s 2||D(w)||∞(τ)dτ(E(w), u− w)(s)ds



• Any classical solution is a dissipative solution.

• With w = 0 one obtains for the dissipative solution the relation
|u(t)|2 ≤ |u(0)|2 this is not in contradiction with some non conservation of
energy coming from lack of regularity and justifies the name dissipative.
Scheffer Shnirelman De Lellis and Szekelyhidi are not dissipative solutions.

• Assume that w is a classical solution and u a dissipative solution then one
has

|u(t)− w(t)|2 ≤ e
∫ t
0 2||D(w)||∞(s)ds|u(0)− w(0)|2

in particular if there exists a classical solution any dissipative solution with the
same initial data coincide with it.



• In the absence of boundary Any family of Leray solutions of 3d

Navier-Stokes equations converge to a dissipative solution. In particular if there
exists for 0 < t < T a smooth solution of Euler equation this is the limit of any
sequence and the energy dissipation goes to zero with ν :

lim
ν→0

ν
∫ T

0

∫
|∇xu(x, t)|2dxdt = 0



Boundary value problem for Navier Stokes

The limit ν → 0 for solution of the Navier Stokes equation in a domain
Ω ⊂ Rd , d = 2,3 with homogenous boundary condition. The Dirichlet
boundary condition uν = 0 is not the easiest one however it is the one to
consider. It can be deduced in the smooth regime from the Boltzmann equation
when the interaction with the boundary is described by a scattering kernel. It
generates the pathology which is observed in physical experiments. Problem
come from the boundary layer generated by the jump in tangential component
of the vorticity. The non linearity may imply the propagation of this jump inside
the media. The problem si basically open even in 2d when one has with smooth
initial data smooth solution both for Euler and Navier Stokes.



Theorem Kato Consider the two problems for divergence free flows (∇ · u = 0

∂tuν − ν∆uν +∇(uν ⊗ uν) +∇pν = 0 , uν(x,0) = u0(x) , uν(x, t) = 0 on ∂Ω

∂tu +∇(u⊗ u) +∇pν = 0 , u(x,0) = u0(x) , u(x, t) · n = 0 on ∂Ω

With smooth solution for 0 < t < T for Euler equation are equivalent :

(i) uν(t)→ u(t) in L2(Ω) uniformly in t ∈ [0, T ]

(ii) uν(t)→ u(t) weakly in L2(Ω) for each t ∈ [0, T ]

(iii) ν
∫ T

0

∫

Ω
|∇uν(x, t)|2dxdt → 0

(iv) ν
∫ T

0

∫

Ω∩{d(x,∂Ω)<ν}
|∇uν(x, t)|2dx → 0

(v) ν
∂utang

ν

∂n
→ 0 in D′(∂Ω× [0, T ])

Proof energy estimates and for (v) boundary layer correction.



Il y a moyen de donner des conditions suffisantes de convergeance mais ceci
en construisant la couche limite de Prandlt. Ce qui exige l’analyticité des
données initiales. Les solutions ainsi construites satisfont bien sur au critère de
Kato. Mais la construction n’est valable en général que pour un temps fini,
appartion de singulairtés



Basic open problems and tools.

• Appearance of singularity for smooth solutions of 3d Euler equation.

• Existence of weak solutions in 3d for initial data less regular than H
5
2 This is

an important issue for at least two reasons.

1 Several problems like the appearance of coherent structures are generated by
turbulent initial data.

2 If singularities appears for smooth solutions at a time T then extension of the
solution after this time implies weak solutions ! !



• Uniqueness of weak solutions. With the exemples of Scheffer, Shnirleman
and De Lellis the only good candidate seems to be the dissipative solutions
then uniqueness follows from the uniqueness for Navier-Stokes OK in 2d in
3d ? ? ? Très différent de ce qui se passe pour Euler compressible ou pour
Hamilton Jacobi

• Criteria for conservation or decay of energy for the Euler equation
(conservation of energy for Leray solution is still an open problem)

1 Exhibit genuine dissipative solutions that would be weak solutions.

2 Give criteria for conservation of energy. Le problème de la conservation de
l’énergie est toujours ouvert pour les solutions de Leray



This is related the introduction of a filter Ĝ(k)

Gl = l3G(
x

l
) , ul = G ) u, τl = Gl ) (u× u)− (Gl ) u)⊗ (Gl ) u) ,

Πl = −∇xul : τl

with u ∈ L3(IR3 × IRt) , ∂t
|u|2

2
+∇x · (

|u|2

2
+ p)u = lim

l→0
Πl(u)

• Convergence of the solution of Navier-Stokes to the solution of Euler equation
in the presence of boundary and of a smooth solution of the Euelr equation
Absence de convergeance ⇔ Décroissance d’énergie



Tools

Conservation of energy

∂t

∫ |uν|2

2
dx + ν

∫
||∇xuν||2dx ≤ 0

With this estimate one may have :

lim
ν→0

(uν ⊗ uν) 4= ( lim
ν→0

uν)⊗ ( lim
ν→0

uν)



Lien avec la théorie statistique de la turbulence.

On représente les vitesses du fluide sous la forme u(x, t) = U + ũ avec ũ une
variable aléatoire de moyenne nulle. On introduit des moments 〈.〉.

Dans la théorie il s’agit de moyennes d’ensemble mais dans la pratique on
prend aussi la moyenne par rapport à un nombre fini de réalisations
(numériques ou expérimentales), la moyenne spatiale ou temporelle sur une
réalisation ce qui conduit à supposer que l’on dispose d’un théorème
ergodique. Enfin on suppose que ces constructions sont uniformes par rapport
à ν. Ce qui me semble le point le plus délicat à prouver

• Kolmogorov On suppose que les corrélations d’ordre 2 sont homogènes et
isotropes :

〈(u(x + r)− u(x))⊗ (u(x + r)− u(x))〉



ne dépendent que du module de r et sont invariant par transformation
Galiléenne alors si dans une région dite zone inertielle elles suivent une loi de
puissance on a :

〈|u(x + r)− u(x))|p〉
1
p 7 Cεr

1
3 , ε = ν〈||∇u||2〉

ν
3
4ε−

1
4 ≤ r ≤ L

Cela veut dire (avec les hypothèses d’uniformité vérifées et ε ne tendant pas
vers 0 avec ν ) qu’avec probabilité 1 les solutions limites pour ν → 0 sont dans
Bα,∞

p pour α < 1/3 et α = 1/3 est le cas limite. Conséquences Cohérences

En l’absence de frontière cela indique que l’on obtient à la limite des solutions

faibles dans B
1
3,∞
p si et seulement si la dissipation d’énergie ne tend pas trop

vite vers zéro ou mieux reste bornée inférieurement.



1 La relation ci dessus ne doit pas être valable pour une suite uν bornée dans
Bα,∞

p pour α > 1/3 et en particulier la dissipation d’énergie d’énergie dans
l’espace entier doit tendre vers zéro. Prouvé par Constantin Edriss Titi with the
hypothesis

uν borné dans L3(0, T ;Bα,∞
3 )/, , α >

1

3

2 Une donnée initiale u ∈ C
1
3 telle que (Eyink)

Gl = l3G(
x

l
) , ul = G ) u, τl = Gl ) (u× u)− (Gl ) u)⊗ (Gl ) u) ,

lim
l→∞

Πl = −∇xul : τl 4= 0

mais sans construction de solution correspondante d’Euler.



3 Dans le cas de conditions aux limites ( no slip ) l’hypothèse (la loi ) de
Kolmogorov n’exclut pas que uν converge (fortement L2(Ω× [0, T )) vers une
solution dans L2(0, T ;Bα,∞

3 )/, , α < 1
3 avec

lim
ν→0

ν
∫ T

0

∫

Ω
|∇xuν(x, t)|2dxdt > 0 (2)

Meme en présence d’une solution régulière d’Euler (est celle ci la bonne ?) Ceci
n’est pas contradictoire avec l’énoncé de Kato.

On considère les dfférentes réalisation du fluide comme des variables
aléatoires et on prend des moyennes 〈., .〉 En pratique :

• Un nombre N d’observation par

For proofs Use energy estimate and a for (v) a boundary layer correction.



It does not seems that anything more can be said in full generality. This is
related to the lack of well posedness for the Prandlt problem. Consider in 2d

With no boundary (periodic or the whole space) the existence on an intervall
[0, T ] of a smooth solution implies both the convergence of any sequence of
Navier Stokes solution



With the energy equality (inequality) the solution of the NS converges weakly to
a function u

∂tuν − ν∆uν +∇(uν ⊗ uν) = −∇pν , (3)
∇ · uν = 0 , uν(x,0) = u0(x) given (4)
1

2
|u(., t)|2 +

∫ t

0

∫

Ω
|∇u(x, t)|2dx =

1

2
|u(.,0)|2 (5)

the obstruction of to u being a weak solution of the Euler equation lies in the
expression :

uν ⊗ uν may be 4= uν ⊗ uν

With no boundary convergence to a strong solution as long as such solution
exists.

Defect of convergence related to a deterministic version of the Kolmogorov
spectra :



uν ⊗ uν = uν ⊗ uν + (uν − uν)⊗ (uν − uν)) (6)
RT (u) = (uν − uν)⊗ (uν − uν)); (7)
∂tu +∇u⊗ u +∇RT (u) +∇p = 0 (8)

Now RT (u)(x, t) is a symmetric positive measure valued matrix.

Extend uν by zero outside Ω and introduce the deterministic correlation spectra
or Wigner transform at the scale

√
ν :

ˆRT (uν)(x, t, k) =
1

2πd

∫

Rd
y

eikyν(x−
√

ν

2
y)⊗ uν(x +

√
ν

2
y)dy (9)



and its weak limit RT (u)(x, t, k) one has
∫

Rd
k

RT (u)(x, t, k)dk = RT (u)(x, t)

φ(x)2RT (u)(x, t) =
1

2πd

∫

Rd
y

eiky(φuν)(x−
√

ν

2
y)⊗ (φuν)(x +

√
ν

2
y)dy

RT is a local object with local isotropy : Galilean invariance one has

ˆRT (u)(x, t, k) =
E(x, t, |k|)

|k|d−1 (Id−
k ⊗ k

|k|2
) (10)

Furthermore under the assumption (traditional in turbulence) that RT is
invariant under rotation and depends only on the tensor (∇u +∇⊥u) one has
in 3d the formulas :

ˆRT (u)(x, t, k) = a(|(∇u +∇⊥u)|)Id + µ(|(∇u +∇⊥u)|)(∇u +∇⊥u) + λ(|(∇u +∇⊥u)|)(∇u +∇⊥u)2



(11)

With in 2d λ ≡ 0

Remark and open problems

• Observe that the term a(|(∇u +∇⊥u)|)Id can be absorbed in the pressure
gradient.

• When ever there is a smooth solution for the Euler equation (with no
boundary) RT (u) ≡ 0

• Taking in account all the hypothesis made giving a formula that would relate µ

and λ and the spectra E(|k|, t, x) should be a first step in a mathematical
treatment of turbulent models say like ε− k



• A second step would be to prove that in any case and for smooth initial data
the defect measure is invariant under rotation and therefore the formula (9) is
valid.

• Denote by

ε(t) = ε(T, ν)(t) =
∫

Ω
|∇uν(x, t)|2dx ,

∫ ∞

0
ε(t)dt ≤

1

2
|u(.,0)|2

then the determinist counter part of the statistical Kolmogorov law would be the
relation

ˆRT (uν)(x, t, k) 7 1.5ε(t)
2
3|k|−

5
3
(Id− k⊗k

|k|2 )

|k|2
for ν → 0

The existence of an estimate of the type () will imply the convergence to a weak
solution (even if no regular solution do exist). The existence of the smooth



solution will give

lim
ν→0

∫ T

0

∫

Ω
|∇uν(x, t)|2dxdt = 0

Boundary value problem for Navier Stokes

To goal is to describe the very few results that do exist for the limit ν → 0 for
solution of the Navier Stokes equation in a domain Ω ⊂ Rd , d = 2,3 with
homogenous boundary condition The Dirichlet boundary condition uν = 0 is
not the easiest one (for instance in 2d u · n = 0 and ∇∧ u = 0 on the
boundary are much easier for our purpose). However it is the one to consider.

1 It can be deduced in the smooth regime from the Boltzmann equation when
the interaction with the boundary is described by a scattering kernel.



2 It generates the pathology which observed in physical experiments. Problem
come from the boundary layer generate by the jump in tangential component of
the vorticity. The non linearity may imply the propagation of this jump inside the
media.

Proposition In any case (modulo extraction of subsequence) uν converges
weakly to an interior dissipative solution u.

This is not enough because for an interior dissipative solution w the test
functions are of compact support or at least should belong to H1

0(Ω) and and
the solution u is not zero on the boundary.

Theorem Kato Consider the two problems for divergence free flows (∇ · u = 0

∂tuν − ν∆uν +∇(uν ⊗ uν) +∇pν = 0 , uν(x,0) = u0(x) , uν(x, t) = 0 on ∂Ω(12)
∂tu +∇(u⊗ u) +∇pν = 0 , u(x,0) = u0(x) , u(x, t) · n = 0 on ∂Ω(13)



Assume that the equation (12) has a smooth solution for 0 < t < T then the
following fact are equivalent :

(i) uν(t)→ u(t) in L2(Ω) uniformly in t ∈ [0, T ]

(ii) uν(t)→ u(t) weakly in L2(Ω) for each t ∈ [0, T ]

(iii) ν
∫ T
0

∫
Ω |∇uν(x, t)|2dx → 0

(iv) ν
∫ T
0

∫
Ω∩{d(x,∂Ω)<ν}|∇uν(x,t)|2dx→0

(v) ν∂utang
ν

∂n → 0 in D′(∂Ω× [0, T ])



(vi) uν(t)→ u(t) weakly in L2(Ω) for each t ∈ [0, T ] u(t) is smooth and
RT (u)(x, t, k) ≡ 0

For proofs Use energy estimate and a for (v) a boundary layer correction.



It does not seems that anything more can be said in full generality. This is
related to the lack of well posedness for the Prandlt problem. Consider in 2d



The Prandlt Boundary Layer ε =
√

ν

∂tu
ε
1 − ε2∆uε

1 + uε
1∂x1u

ε
1 + uε

2∂x2u
ε
1 + ∂x1p

ε = 0

∂tu
ε
2 − ε2∆uε

2 + uε
1∂x1u

ε
2 + uε

2∂x2u
ε
2 + ∂x2p

ε = 0

∂x1u
ε
1 + ∂x2u

ε
2 = 0 uε

1(x1,0) = uε
2(x1,0) = 0 on x1 ∈ R

X1 = x1, X2 =
x2

ε
,

ũ1(x1, X2) = u1(x1, X2), ũ2(x1, X2) = εu2(x1, X2)



∂tũ1 − ν∂2
x2

ũ1 + ũ∂x1u1 + ũ2∂x2ũ1 + ∂x1p̃ = 0

∂x2p̃ = 0, p̃(x1, x2, t) = p̃(x1, t) ∂x1ũ1 + ∂x2ũ2 = 0

ũ1(x1,0) = ũ2(x1,0) = 0 for x1 ∈ R

lim
x2→∞

ũ2(x1, x2) = 0, lim
x2→∞

ũ1(x1, x2) = U(x1, t)

|U(x1, t)|2

2
+ p̃(x1, t) = Constant



• The validity of the Prandlt approximation is consistant with the Kato theorem

ν
∫ T

0

∫

Ω∩d(x,∂Ω)≤cν
|∇∧ uν(x, s)|2dxds ≤ C

√
ν

• As long as the solution of of the Prandlt equations is smooth the solution of
Navier Stokes converges to the solution of the Euler equation.

• The possibility of detachment and recirculation appear in the fact that the
Prandlt problem is highly unstable.

• If initially the velocity profile is monotone then (Oleinik) global solution do exist
for the Prandlt equation.



• The loss of regularity in finite time is proven for some class of non monotone
initial profile (E W. B. Enquist)

• The existence of solution which is not described by the Prandlt equation has
been constructed by Grenier using unstable solutions of the 2d Euler equation.

• With analytic initial data (in fact analytic with respect to the tangential variable
is enough) one can prove abstract version of the Cauchy Kowalewsky theorem
the existence of a smooth solution of the Prandlt equation for a fintie time and
the convergence to the solution of the Euler equation during this same time
(Asano, Caflisch-Sammartino and Cannone-Lombardo-Sammartino)



Relation between Prandlt and Kelvin Helmholtz

Comparison beetwen Prandlt and Kelvin Helmholtz problems in 2d

The Kelvin Helmholtz problem concerns the evolution of a solution of the 2d

Euler equation

∂tu +∇(u⊗ u) +∇p = 0 , ∇ · u = 0 (14)

with initial vorticity Ω being a measure concentrated on a curve

• Existence of a weak solution when Ω(x,0) is a Radon measure with
distinguished sign (Delort) or with controlled change of sign (Lopes Filho,
Nussenzveig Lopes and Xin). This is impaired by the non uniqueness result of
Shnirelman



• For density located on a smooth curve the problem is equivalent to the
Birkhoff Rott equation in the complex plane.

∂tz =
1

2πi
p.v.

∫ dλ′

z(t, λ)− z(t, λ′)
(15)

• As for the Prandlt one has for (14) a local in time existence uniqueness result
in the class of analytic initial data (B. Frisch Sulem and Sulem) with a version of
the Cauchy Kowalewsky theorem.

• As for the Prandlt equation one can construct a solution with blows up in
finite. Use reversibility write (Caflish Orellana)

z(t, λ) = λ + εs0 + r(λ, t) (16)



with s0 given by :

s0(λ, t) = (1− i){(1− e−
t
2−iλ)1+ν − (1− e−

t
2+iλ)1+ν} (17)

ε > 0 small enough , r(λ, t) proven to be analytic for t > 0 and much smaller
(O(ε2)) in C2(λ) Since s0(λ,0) ∼ λ1+ν :

z(λ,0) ∈ C1+ν , z(λ,0) /∈ C1+ν′ for ν′ > ν (18)
• Different with some regularity ( Cα

t (C1+ν
λ ) the problem can be “locally "

reduced to the non linear perturbation of an elliptic equation :

Ω(0,0)=1 , z(λ, t)=(αt+β(λ+εf(t, λ)) for sup{|λ|, |t|} ≤M, f(0,0)=∇f(0,0)=0 .

ε|β|2∂tf =
1

2πi
p.v.

∫

z(t,λ′)∈

Ω(t, λ′)dλ′

(λ− λ′)(1− εf(t,λ)−f(t,λ′)
λ−λ′ )

+E(t, r(tλ)) (19)



r -→ E(t, r) denoting analytic functions in .



Next one use the expansion

1

2π
pv

∫ dλ′

(λ− λ′)(1 + εf(λ,t)−f(λ′,t)
λ−λ′ )

dλ′

=
ε

2π

∫ f(λ, t)− f(λ′, t)

(λ− λ′)2
dλ′+

∑

n≥2

εn

2π

∫ (f(λ, t)− f(λ′, t))n

(λ− λ′)(n+1)
dλ′ .

and the formulas (Hilbert transform)

1

2π

∫ f(λ, t)− f(λ′, t)

(λ− λ′)2
dλ′ = −

i

2
sign(D)f ,

1

2π
vp

∫ f(λ, t)− f(λ′, t)

(λ− λ′)2
dλ′ = |D|f

and deduce from (??) and (??) that the real and imaginary part of



f(t, λ) = X(t, λ) + iY (t, λ) are in (′ ⊂⊂) solutions of the system :

∂tX=
Ω2

0
2β2|Dλ|Y + εR1(X, Y ) + E1(t, λ) (20)

∂tY=
Ω2

0
2β2|Dλ|X+εR2(X, Y )+E2(t, λ) (21)

The consequence is that a non analytic solution as the one given by Caflsich
and Orellana cannot remain in Cα

t (C1+ν
λ ) after the apparition of an Holder

singularity it has to be more singular. In this case the challenge is threshold of
regularity that will imply analyticity.

Improving the regularity threshold

Experiments and numerical simulation, done mostly for the Kelvin Helmholtz
problem show the existence and the stability of vortex sheet after the singularity.



Furthermore these vortex sheet roll up and seem to lead to rectifiable curves
but of infinite length. Therefore the “threshold of regularity" should be above and
may include spirals with finite length. In fact the best (to the best of my
knowledge) result is due to Sijue Wu. The hypothesis Cα

loc(IRt;C1+β
loc (IRλ) is

replaced by H1
loc(IRt × IRλ) . Estimates are done explicitly using theorems of

G. David saying that for all chord arc curves Γ : s -→ ξ(s), s the arc length the
Cauchy integral operator

CΓ(f) = pv
∫ f(s′)

ξ(s)− ξ(s′)
dξ(s′)

is bounded in L2(ds) . It is interesting to notice that these results will apply to
logarithmic spirals r = eθ but not to infinite length algebraic spirals.

Conclusion

• I tried to show many crucial the issues lie in the analysis of the Euler equation.



• In 3d space variables with no boundary the solution of incompressible Navier
Stokes equation converges with ν → 0 to a dissipative solution of the Euler
equation u. Therefore to the classical solution whenever such classical solution
exist. It will not be in the non uniqueness With the formula :

(uν(x, t)− u)⊗ (uν(x, t)− u) =
∫

ˆRT (uν)(x, t, k)dk

one observes that if a Onzager Kolmogorof type hypothesis holds

| ˆRT (uν)(x, t, k)| =
E(|k|)
4π|k|2

≤ ε
2
3|k|−

5
3 (22)

then uν converges to a weak solution of the Euler equation. As conclusion one
can observe that with no boundary (21) implies :

lim
ν→0

ν
∫ T

0

∫

Ω
|∇uν|2dxdx 4= 0⇒ no regular solution of the Euler equation

(23)



• As observed above the situation is completely different when boundary
effects are present and this is already true in 2d.

• In this setting turbulent effect may appear and some results (invariance under
rotation) of the Wigner -Measure -Rayleigh Tensor may be available. On the
other hand the full description of what happen is surely out of reach even in 2d.

• Existence of Kelvin Helmholtz type solution appear in the wake of turbulence
generated by boundary effect. In agreement with the previous remark the
support of the vorticity density is a very singular curve. On the other hand such
phenomena is very stable leading to the need of stability theorem for singular
solution. Surely much more difficult but may be more natural than result based
on the Arnold Criteria.


