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This work extends the estimator developed in Part 1 of this study (Hœpffner et al., J.
Fluid Mech., submitted) to the problem of estimating a turbulent channel flow at Reτ =
100 based on a history of noisy measurements on the wall. The key advancement enabling
this work is the development and implementation of an efficient technique to extract,
from direct numerical simulations, the relevant statistics (mean and covariance) of an
appropriately-defined “external forcing” term on the Navier–Stokes equation linearized
about the mean turbulent flow profile. This forcing term is designed to account for
the unmodelled (nonlinear) terms during the computation of the (linear) Kalman filter
feedback gains at each wavenumber pair {kx, kz}. The statistics of this forcing term
are found to have some similarities to the parameterization of the external disturbances
considered in Part 1 of this study, which dealt with the estimation of the early stages
of transition in the same domain. Three key steps were identified in obtaining adequate
estimator performance in the near-wall region: 1) linearization the flow system about
the mean turbulent flow profile, accounting for the statistics of the additional forcing
term during the computation of the feedback gains, 2) extraction of these statistics from
a direct numerical simulation, and 3) incorporation of the nonlinearity of the actual
system into the estimator model at the final step in the development of the estimator
(using an extended Kalman filter). Upon inverse transform of the resulting feedback
gains computed on an array of wavenumber pairs, we obtain, as in Part 1, effective and
well-resolved feedback convolution kernels for the estimation problem.

It is demonstrated that by applying the optimal feedback gains, for all three mea-
surements, satisfactory correlation between the actual and estimated flow is obtained in
the near-wall regions. The correlation eventually decays as the wall distance increases
but the decay sets in later compared to using estimation gains based on a statistically
uncorrelated stochastic models. Both Kalman and extended Kalman filters are evalu-
ated and naturally the extended filter is giving better correlations between the actual
and estimated flow, however the Kalman filter gives good performance in the near-wall
regions.

1. Introduction

This paper builds directly on Part 1 of this study (Hœpffner et al., J. Fluid Mech.,
submitted, hereafter referred to as Part 1). It extends the estimator developed there, for
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the case of perturbed laminar channel flow, to the problem of fully-developed channel-flow
turbulence. The reader is referred to Part 1 for related general references, background
information on optimal state estimation (Kalman filter) theory, and a description of what
it takes to apply this theory to a well-resolved discretization of a fluid system in a manner
that is consistent with the continuous PDE system upon which this discretization is based
(that is, in a manner such that the resulting feedback convolution kernels converge upon
refinement of the numerical grid). The present paper effectively picks up where Part 1
left off, and treats specifically the issues involved in extending the estimator developed
in Part 1 to the problem of estimating a fully-developed turbulent channel flow based on
wall measurements.

1.1. Model predictive estimation

There are two natural approaches for model-based estimation of near-wall turbulent flows:
model predictive estimation and extended Kalman filtering. Bewley & Protas (2004) dis-
cusses the model predictive estimation approach, which is based on iterative state and
adjoint calculations, optimizing the estimate of the state of the system such that the non-
linear evolution of the system model, over a finite horizon in time, matches the available
measurements to the maximum extent possible. This is typically accomplished by opti-
mizing the initial conditions in the estimator model in order to minimize a cost function
measuring a mean-square “misfit” of the measurements from the corresponding quantities
in the estimator model over the time horizon of interest. This optimization is performed
iteratively, using gradient information provided by calculation of an appropriately-defined
adjoint field driven by the measurement misfits at the wall. The technique provides an
optimized estimate of the state of the system which accounts for the full nonlinear evo-
lution of the system, albeit over a finite time horizon and providing only a local optimal
which might be far from the actual flow state sought. The technique is typically ex-
pensive computationally, as it requires iterative marches of the state and adjoint fields
over the time horizon of interest in order to obtain the state estimate; for this reason,
this approach is often quickly disqualified from consideration as being computationally
intractable for practical implementation. The model predictive estimation approach is
closely related to the adjoint-based approach to weather forecasting, commonly known
as 4D-var. For further discussion of model predictive estimation as it applies to near-wall
turbulence, the reader is referred to Bewley & Protas (2004).

1.2. Extended Kalman filtering

The extended Kalman filter approach, which is the focus of the present paper, is described
in detail in Part 1 of this study. To summarize it briefly, the estimation problem is first
considered in the linearized setting. Define r̂m as the Fourier transform of the vector of
all three measurements available on the walls in the actual flow system at wavenumber
pair {kx, kz}, and define r̂ as the corresponding quantity in the estimator model. At
each wavenumber pair {kx, kz}, a set of feedback gains L is first computed such that a
forcing term v̂ = L(r̂m− r̂) on the (linearized) estimator model results in a minimization
of the energy of the estimation error (that is, this feedback minimizes the trace of the
covariance of the estimation error, usually denoted P ), assuming the flow state itself
is also governed by the same linearized model. This is called a Kalman filter, and the
theory for the calculation of the optimal feedback gain L in the estimator is elegant,
mathematically rigorous, and well known†.

Upon inverse transform of the resulting feedback gains computed on an array of

† For a succinct introduction in the spatially-discrete (ODE) setting, see, e.g., p. 463–470
of Lewis & Syrmos (1995). For a more comprehensive presentation in the ODE setting, see
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wavenumber pairs, we seek (and, indeed, find) well resolved feedback convolution kernels
for the estimation problem that, far enough from the origin (that is, from , decay expo-
nentially with distance from the origin. The reader is referred to Bamieh (1997), Bewley
(2001) and Högberg et al. (2003a) for further discussion of

(a) the technique used to transform feedback gains in Fourier space to feedback con-
volution kernels in physical space,

(b) interpretation of what these convolution kernels mean in both the control and
estimation problems, and

(c) description of the overlapping decentralized control implementation facilitated by
this approach, which is built from an interconnected array of identical tiles, each with
actuators, sensors, and control logic incorporated, that communicate only with their
neighbors.

Ultimately, the estimator feedback v̂ = L(r̂m− r̂) is applied to a full (nonlinear) model
of the flow system. This final step of reintroducing the nonlinearity of the system into
the estimator model results in what is called an extended Kalman filter. In practice, the
extended Kalman filter has proved to be one of the most reliable techniques available for
estimating the evolution of nonlinear systems.

1.3. On the suitability of linear models of turbulence for state estimation and control

As described in the previous section, the feedback kernels used in the extended Kalman
filter are calculated based on a linearized model of the fluid system. Thus, the appli-
cability of the extended Kalman filtering strategy to turbulence is predicated upon the
hypothesis that linearized models faithfully represent at least some of the important
dynamic processes in turbulent flow systems.

The fluid dynamics literature of the last decade is replete with articles aimed at sup-
porting this hypothesis. For example, Farrell & Ioannou (1996) used these linearized
equations in an attempt to explain the mechanism for the turbulence attenuation that is
caused by the closed-loop control strategy now commonly known as opposition control.
Jovanović & Bamieh (2001) proposed a stochastic disturbance model which, when used
to force the linearized open-loop Navier–Stokes equation, led to a simulated flow state
with certain second-order statistics (specifically, urms, vrms, wrms, and the Reynolds
stress −uv) that mimicked, with varying degrees of precision, the statistics from a full
DNS of a turbulent flow at Reτ = 180.

Clearly, however, the hypothesis concerning the relevance of linearized models to the
turbulence problem can only be taken so far, as linear models of fluid systems do not
capture the nonlinear “scattering” or “cascade” of energy over a range of length scales
and time scales, and thus linear models fail to capture an essential dynamical effect that
endows turbulence with its inherent “multiscale” characteristics. The key philosophy of
the present work (and, indeed, the key philosophy motivating our application of linear
control theory to turbulence in general), is that the fidelity required of a model for it to be
adequate for control (or estimator) design is in fact much lower than the fidelity required
of a model for it to be adequate for accurate simulation of the system. Thus, for the
purpose of computing feedback for the control and estimation problems, linear models
might well be good enough, even though the fidelity of linear models as simulation tools
to capture the open-loop statistics of turbulent flows is still the matter of some debate
in the fluids literature. All that the feedback in an extended Kalman filter has to do is
to give the estimator model a “nudge” in approximately the right direction when the

Anderson & Moore (1979). For the corresponding derivation in the spatially-continuous (PDE)
setting, see Balakrishnan (1976).
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state and the state estimate are diverging. The extended Kalman filter contains the full
nonlinear equations of the actual system in the estimator model, so if the state and the
state estimate are sufficiently close, the estimator will accurately track the state, for at
least a short period of time, with little or no additional forcing necessary.

Stating this philosophy another way, in the control problem, the model upon which the
control feedback is computed need only include the key terms responsible for the produc-
tion of energy. Since the nonlinear terms in the Navier–Stokes equations are conservative,
and thereby do not contribute directly to energy production, we can expect that a linear
model may suffice. For Navier–Stokes systems near solid walls, there is evidence that
this is in fact true, at least for sufficiently low Reynolds number. Kim & Lim (2000)
showed that interior body forcing (applied everywhere inside the flow domain) that was
constructed to exactly cancel the linear coupling term in the linear part of the nonlin-
ear Navier–Stokes equation (that is, canceling the LC term in (2.4)) was sufficient to
completely relaminarize the turbulent flow. Högberg et al. (2003b) showed that blowing
and suction distributed on the channel walls that was determined using full-information
linear control theory (scheduling the feedback gains based on the instantaneous shape
of the mean velocity profile) was also sufficient to completely relaminarize the turbulent
flow.

The present work on the estimation problem is based on the related philosophy that,
in a similar manner, the model upon which the estimator feedback is computed need only
capture the key terms responsible for the production of energy in the system describing
the estimation error.

1.4. The problem of nearly unobservable modes

The problem of estimating the state of a chaotic nonlinear system based on limited noisy
measurements of the system is inherently difficult. When posed as an optimization prob-
lem (for example, in the model predictive estimation approach described previously),
one can expect that, in general, multiple local minima of such a nonconvex optimization
problem will exist, many of which will be associated with state estimates that are in fact
poor. These difficulties are exacerbated in the case of the estimation of near-wall turbu-
lence by the fact that turbulence is a multiscale phenomenon (that is, it is characterized
by energetic motions over a broad range of length scales and time scales that interact in
a nonlinear fashion), with significant nonlinear chaotic dynamics evolving far from where
sensors are located (that is, on the walls).

As illustrated, e.g., in Figure 1b of BL98 (that is, Bewley & Liu 1998), quantified by
the “observation residual” in Table 1 of BL98, and discussed further in Part 1, even in
the laminar case, at kx = 1, kz = 0 a significant number of the leading eigenmodes of
the system are “center modes” with very little support near the walls, and are thus are
nearly unobservable with wall-mounted sensors. As easily shown via similar plots in the
turbulent case at the same and higher bulk Reynolds numbers, an even higher percentage
of the leading eigenmodes of the linearized system are nearly unobservable (that is, have
very little support near the walls) in the turbulent case, with the problem getting worse as
the Reynolds number is increased. We thus see that the problem of estimating turbulence
is fundamentally harder than the problem of estimating perturbations to a laminar flow
even if the linear model of turbulence is considered as valid, simply due to the heightened
presence of nearly unobservable modes.

In the present work we focus our attention primarily on getting an accurate state
estimate fairly close to the walls, where the sensors are located. This is done with the
idea in mind that, in the problem of turbulence control (which is our ultimate long-term
objective in this effort, and the reason we are pursuing this line of investigation in the
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first place), it is the near-wall region only that, on average, turbulence “production”
substantially exceeds “dissipation”, as pointed out in Jimenez (1999). Thus, we proceed
with the objective that, if we can

(a) estimate the fluctuations in the near-wall region with a sufficient degree of accu-
racy, then

(b) subdue these near-wall fluctuations with appropriate control feedback,

then we will have a net stabilizing effect on the turbulent motions in the entire flow
system, even if we don’t completely relaminarize the turbulent flow. It is thus, we hy-
pothesize, unnecessary for us to estimate the precise motions of the flow far from the wall
in order to realize our ultimate objective in this work. Flow-field fluctuations far from
the wall, which will not be estimated accurately in this work, will (through nonlinear
interactions) act as disturbances to excite continuously the state estimation error, while
feedback from the sensors will be used to subdue continuously this error in the near-wall
region.

1.5. Comparison of the estimation and control problems applied to near-wall turbulence

Another significant difference between the turbulence control and turbulence estimation
problems is that, in the control problem, once (if) the control becomes effective, the
system approaches a stationary state in which the linearization of the system is valid.
In the estimation problem, on the other hand, even if the estimate at some time is quite
accurate, the system is still moving on its chaotic attractor, so the linearization of the
system about some mean state is not strictly valid. Thus, in this respect, it is seen that
the turbulence estimation problem might be considered as being fundamentally harder
than the turbulence control problem.

1.6. Outline

A brief review of the governing equations and some of the particular properties of the
extended Kalman filter used in this work is given in §2. Section 3 collects and analyzes
the relevant statistics from a direct numerical simulation of a turbulent channel flow at
Reτ = 100 in order to build the estimator. The statistical data from §3 is then used in
§4 to compute feedback gains (in Fourier space) and kernels (in physical space) for the
estimator. The performance of the resulting estimator is evaluated via DNS in §5, and
§6 presents some concluding remarks and suggestions for future improvements.

2. Governing equations

2.1. State equation and identification of terms lumped into the “external forcing” f

The system model considered in this work is the Navier–Stokes equation for the three
velocity components {U, V,W} and pressure P of an incompressible channel flow, written
as a (nonlinear) perturbation about a base flow profile ū(y) and bulk pressure variation
p̄(x) such that, defining
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where {u, v, w, p} denote the temporally-fluctuating components of the flow, we have
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By selecting the base flow profile ū(y) as the mean flow,

ū(y) = lim
T→∞

1

T Lx Lz

∫ T

0

∫ Lx

0
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0

U dz dxdt,

and selecting p̄(x) to account for the mean pressure gradient sustaining the flow. Note
that we assume no-slip solid walls (U = V = W = u = v = w = 0 on y = ±1) and that
periodic boundary conditions are applied in the x and z directions to the perturbations
variables {u, v, w, p}. This facilitates decomposition of the perturbation problem (2.1) in
the x and z directions using a Fourier series.

We now apply such a Fourier decomposition to (2.1), using hat subscripts (̂ ) to de-
note the Fourier representation. The system may then be transformed to {v̂, η̂} form in
a straightforward fashion. Applying the Laplacian ∆ = ∂2/∂y2−k2, where k2 = k2

x+k2
z ,

to the Fourier transform of (2.1b), substituting for ∆p̂ from the divergence of the Fourier
transform of (2.1), and applying the Fourier transform of (2.2) gives the equation for
v̂. Subtracting ikx times the Fourier transform of (2.1c) from ikz times the Fourier
transform (2.1a) gives the equation for η̂ = ikzû − ikxŵ. The result is the linear Orr–
Sommerfeld/Squire equations at each wavenumber pair {kx, kz} with an extra term ac-
counting for the nonlinearity of the system
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where

LOS = −ikxū∆+ ikxū
′′ +∆2/Re,

LSQ = −ikxū+∆/Re,

LC = −ikzū
′,

(2.5)

where {n̂1, n̂2, n̂3} are given by the Fourier transform of (2.3), taking (from the Fourier
transform of (2.2) and the definition of η̂)
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and where, with the walls located at y = ±1 and the velocities normalized such that the
peak value of ū(y) is 1, Re is the Reynolds number based on the centerline velocity and
channel half-width. Note that, for kx = kz = 0, it follows immediately from the definition
of this system that v̂ = ω̂ = 0 for all y. For all other wavenumber pairs, multiplying (2.4)
by the inverse of the matrix on its LHS, it is straightforward to write the governing
equation as

˙̂q = Aq̂ +Bn̂, (2.6)

where

q̂ =

(

v̂
η̂

)

, n̂ =




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
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)

,

B =

(

∆−1 ikxD ∆−1 k2 ∆−1 ikzD
ikz 0 −ikx

)

.

Note that the terms in this expression depend on the wavenumber pair being considered,
{kx, kz}, and that the state q̂ is a continuous function of both the wall-normal coordinate
y and the time coordinate t. Implementation of this equation in the computer requires
discretization of this system in the wall-normal direction y and a discrete march in time
t.

The present system may be linearized by replacing the exact expression for n by an
appropriate stochastic model, which we will denote f , thereby obtaining the linear state-
space model

˙̂q = Aq̂ +Bf̂, (2.7)

As the mean of n is everywhere zero, it is logical to select this stochastic model such that
E[f ] = 0, where the expectation operator E[·] is defined as the average over many many
realizations of the stochastic quantity in brackets. The covariance of f will be modeled
carefully based on the covariance of n observed in DNS, as discussed further in §2.3.

2.2. Measurements

The present work attempts to develop the best possible estimate of the state based on
measurements of the flow on the walls. As discussed in Part 1, and in greater detail in Be-
wley & Protas (2004), the three measurements available on the walls are the distributions
of the streamwise and spanwise wall skin friction and the wall pressure. This information
is mathematically complete in the following sense: if this information is uncorrupted by
noise and the external forcing on the system is known exactly, the entire state of the flow
(even in the fully turbulent regime, and at any Reynolds number) is uniquely determined
by these measurements at the wall in an arbitrarily small neighborhood of time t (with-
out knowledge of the initial conditions). However, the actual identification of this state
is quite another matter, as it reflects an ill-posed problem that is hyper-sensitive to all
sorts of errors (e.g., modeling errors, measurement errors, numerical errors, series trun-
cation errors, etc.). These errors are unavoidable, even in relatively “clean” numerical
experiments. Thus, the problem of estimation may be viewed as a “smoothing problem”,
or an attempt to reconcile noisy measurements with an approximate dynamic model of
the system.

In the present paper, we have chosen to transform the three measurements available on
the walls (of streamwise and spanwise wall skin friction and wall pressure) to a slightly
different form such that their effects on the estimation of the system (2.7), which is in
{v, η} form, is a bit more transparent. There is a bit of flexibility here; in the present
work, we have chosen to define this transformed measurement vector r to contain scaled
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versions of the wall values of the wall-normal derivative of the wall-normal vorticity,
ηy/Re, the second wall-normal derivative of the wall-normal velocity, vyy/Re, and the
pressure, p. Note that we can easily relate this transformed measurement vector to the
raw measurements of τx = uy/Re, τz = wy/Re, and p on the walls, which might be
available from a lab experiment, via the relation (in Fourier space)

r̂ ,





1
Re η̂y|wall

1
Re v̂yy|wall

p̂|wall



 =


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

 , (2.8)

and we may relate the transformed measurement vector r to the state q via the simple
relation
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, (2.9)

where g accounts for the measurement noise. The last row of the above relation is easily
verified by taking ∂/∂x of the x-momentum equation plus ∂/∂z of the z-momentum
equation, then applying continuity and the boundary conditions.

For the purpose of posing the present state estimation problem, the measurements are
assumed to be corrupted by uncorrelated, zero-mean, white Gaussian noise processes,
which are assembled into the vector ĝ with an assumed covariance (in Fourier space) of

G =





α2
η 0 0
0 α2

v 0
0 0 α2

p



 . (2.10)

Note that such an assumption of uncorrelated, white (in space and time) noise is in
fact a fairly realistic model for electrical noise in the sensors. Note also that, for a given
covariance of f , which we shall define in the following section, the diagonal components
of G effectively parameterize the balance between the two types of stochastic forcing in
this problem, the measurement noise g and the stochastic forcing f , and thus reflect how
much we “trust” our three types of measurements. If our trust in the measurements is
increased (that is, if the diagonal components of G are reduced), then generally more
feedback is applied by the resulting Kalman filter gains in order to correct the estimator
more aggressively based on the information contained in the measurements.

A different parameterization for the noise covariance that might be of interest in a
practical implementation, in which the physical sensors measure τx, τy, and p, is

G = T





α2
τx

0 0
0 α2

τy
0

0 0 α2
p



T ∗, (2.11)

where T is defined in (2.8) and the convenient relation given in (2.5) of Part 1 has
been used to relate the covariance of the noise on the raw measurements to the present
formulation. This parameterization should also be explored numerically in future work.

2.3. Extracting the relevant statistics for state estimation from resolved simulations

The performance of the estimator may be tuned by accurate parameterization of the rel-
evant statistical properties of the forcing term f in the linearized state model, in addition
to adjusting the parameterization of the statistical properties of the measurement noise
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g. These statistics play an essential role in the computation of the Kalman filter feedback
gains.

In the present work, we will assume that f is effectively uncorrelated from one time step
to the next (that is, we assume that f is “white” in time) in order to simplify the design of
the estimator. Subject to this central assumption, we proceed by developing an accurate
model for the assumed spatial correlations of f . As the system under consideration is
statistically homogeneous in the x and z directions, the covariance of the stochastic
forcing f may be parameterized in physical space as

E[fi(x, y, z, t)fj(x+ rx, y
′, z + rz, t

′)] = δ(t− t′)Qfifj
(y, y′, rx, rz),

where δ(t) denotes the Dirac delta and where the covariance Qfifj
is determined by

calculating the statistics of the actual nonlinear forcing term n in a DNS,

Qfifj
(y, y′, rx, rz) = lim

T→∞

1

T Lx Lz

∫ T

0

∫ Lx

0

∫ Lz

0

ni(x, y, z)nj(x+ rx, y
′, z + rz) dz dxdt.

(2.12)
As the system under consideration is statistically homogeneous, or “spatially invariant”,
in the x and z directions, it is more convenient to work with the Fourier transform of the
two-point correlation Qfifj

rather than working with Qfifj
itself, as the calculation of

Qfifj
in physical space involves a convolution sum, which reduces to a simple multiplica-

tion in Fourier space. The Fourier transform of Qfifj
, which we identify as the spectral

density function Rf̂if̂j
, is defined as

Rf̂if̂j
(y, y′, kx, kz) =

1

4π

∫ Lx/2

−Lx/2

∫ Lz/2

−Lz/2

Qfifj
(y, y′, rx, rz) e

−ikxrx−ikzrz drxdrz. (2.13)

Note that, due to the statistical homogeneity of the system in x and z, the spectral
density function Rf̂if̂j

is a decoupled at each wavenumber pair {kx, kz}, and thus may

be determined from the DNS according to

Rf̂if̂j
(y, y′, kx, kz) = lim

T→∞

1

T

∫ T

0

n̂i(y, kx, kz)n̂
∗
j (y

′, kx, kz) dt. (2.14)

Certain symmetries may be applied to accelerate the convergence of the statistics
determined from the DNS and to reduce the amount of covariance data that needs to
be stored, which is in fact quite large. Since Qfifj

is a real-valued function, Rf̂if̂j
is

Hermitian, so

Rf̂if̂j
(y, y′, kx, kz) = R∗

f̂if̂j
(y, y′,−kx,−kz). (2.15)

By (2.14), it follows immediately that

Rf̂if̂j
(y, y′, kx, kz) = R∗

f̂j f̂i
(y′, y, kx, kz). (2.16)

Due to the up/down and left/right statistical symmetry in the flow, it also follows that

Rf̂if̂j
(y, y′, kx, kz) = ±R∗

f̂if̂j
(−y,−y′, kx, kz), (2.17a)

Rf̂if̂j
(y, y′, kx, kz) = ±R∗

f̂if̂j
(y, y′, kx,−kz), (2.17b)

Rf̂1f̂3
(y, y′, kx, kz) = Rf̂2f̂3

(y, y′, kx, kz) = 0, (2.17c)

where, in (2.17a), the minus sign is used for the cases {i = 2, j 6= 2} and {i 6= 2, j = 2},
and the positive sign is used for all other cases and, in (2.17b), the minus sign is used
for the cases {i = 3, j 6= 3} and {i 6= 3, j = 3}, and the positive sign is used for all other
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cases. The reader is referred to, e.g., Moin & Moser (1989) for similar computations.
Finally, for later use, the individual components of the spectral density function Rf̂ f̂ at

each wavenumber pair {kx, kz} are denoted by

Rf̂ f̂ (y, y
′, kx, kz) =





Rf̂1f̂1
Rf̂1f̂2

Rf̂1f̂3

Rf̂2f̂1
Rf̂2f̂2

Rf̂2f̂3

Rf̂3f̂1
Rf̂3f̂2

Rf̂3f̂3



 .

3. Statistics of the nonlinear term n

We now perform a direct numerical simulation of the nonlinear Navier–Stokes equation
in a turbulent channel flow at Reτ = 100, gathering the statistics of the nonlinear term
n identified in (2.3), which combines all those terms which will be supplanted by the
stochastic forcing f in the linearized model (2.7) upon which the Kalman filter will be
based.

Note that all DNS calculations performed in this work used the code of Bewley, Moin
& Temam (2001). For the spatial discretization, this code uses dealiased pseudospectral
techniques in the streamwise and spanwise directions and an energy-conserving second-
order finite difference technique in the wall-normal direction. For the time march, the
code uses a fractional step implementation of a hybrid second-order Crank–Nicolson /
third-order Runge–Kutta–Wray method, as described in Aksevoll & Moin (1995). In
all simulations, the overall pressure gradient is adjusted at each time step in order to
maintain a constant mass flux in the flow, and a computational domain of size 4π ×
2 × 4π/3 in the x × y × z directions is used. The resolution is 42 × 64 × 42 Fourier,
finite difference, Fourier modes (that is, 64 × 64 × 64 dealiased collocation points). The
numerical scheme used to discretize the Orr–Sommerfeld/Squire equations in this work
is the spectral Differentiation Matrix Suite of Weideman & Reddy (2000); for details on
how that scheme has been applied to our estimation problem, see Högberg et al. (2003a).

The covariance of the forcing term n = (n1, n2, n3)
T identified in (2.3) was sampled

during a DNS calculation long enough to obtain statistical convergence. During the sim-
ulation, the full covariance matrices were computed at each wavenumber pair, creating
a very large four-dimensional data set. The size of the covariance data is Nx ×Nz ×N2

y

for each correlation component of the forcing vector (before exploiting any symmetries),
where Nx, Ny, and Nz denote the resolution in the corresponding directions. As reso-
lution requirements of turbulence simulations increase quickly with increasing Reynolds
number, at higher Reynolds numbers it soon becomes necessary to represent only the
most significant components of these correlations via some sort of reduced-order mod-
eling technique, such as Proper Orthogonal Decomposition via the “snapshot” method.
The symmetries mentioned in §2.3 were then applied in post processing to improve the
statistical convergence. These statistics are subsequently used in §4, where the optimal
estimation feedback gains are computed. In §5, the feedback gains so determined are
used in order to estimate a fully turbulent flow based on wall measurements alone. Both
Kalman filters and extended Kalman filters are investigated.

In Figure 1 the magnitude of the spectral density function at four representative
wavenumber pairs {kx, kz} are plotted. As seen in the figure (plotted along the main
diagonal), the variance of the forcing terms is stronger in the high shear regions near
the walls, as expected. Note also that there is a pronounced cross-correlation between f1

and f2, accounting for the Reynolds stresses in the flow, with the other cross-correlations
converging towards zero as the statistical basis is increased. Figure 3a shows the cor-
responding variation of the maximum magnitude of the spectral density function as a
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Figure 1. The magnitude of the spectral density function Rf̂ f̂ (y, y
′, kx, kz) of f̂ , computed

from the DNS of a turbulent channel flow at Reτ = 100, at wavenumber pairs {kx, kz} of (a)
{1.0, 3.0}, (b) {3.0, 1.5}, (c) {0.0, 1.5}, and (d) {4.0, 4.5}. The nine “squares” correspond to the
correlation between the various components of the forcing vector; from furthest to the viewer

to closest to the viewer, the squares correspond to the f̂1, f̂2, and f̂3 components on each axis.
The width of each side of each square represents the width of the channel, [−1, 1]. The variance
is plotted along the diagonal of each square.

function of the wavenumbers kx and kz. As expected, the stochastic forcing is stronger
for lower wavenumber pairs.

Figure 2, a corresponding plot of the magnitude of the spectral density function of the
stochastic forcing model defined in Part 1 is given. Note that the shape of this covariance
model is invariant with {kx, kz}, it is only the overall magnitude of this covariance model
that varies with {kx, kz}, in contrast with the covariance data determined from the
DNS data, as reported in Figure 1. Figure 3b shows the corresponding variation of the
maximum magnitude of the spectral density function as a function of the wavenumbers
kx and kz.
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Figure 2. The magnitude of the spectral density function Rf̂ f̂ (y, y
′, kx, kz) of f̂ , as parameter-

ized in the laminar model proposed in Part 1 of this study, taking p = 0 (left) and p = 3 (right);
see Figure 1 for further explanation of the plot.
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Figure 3. The variation of the maximum amplitude of the spectral density function as a function
of the wavenumbers kx and kz for the DNS data (left) and the statistical model of Part 1 (right).
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Figure 4. Isosurfaces of the physical space convolution kernels determined for Reτ = 100 turbu-
lent channel flow based on the statistics of the neglected terms in the linearized model, as deter-
mined by DNS and plotted in Figures 1 and 3a. Shown are the steady-state convolution kernels
relating the (left) τx, (center) τz, and (right) pmeasurements at the point {x = 0, y = −1, z = 0}
on the wall to the estimator forcing on the interior of the domain for the evolution equation
for the estimate of (top) v and (bottom) η. Visualized are positive (dark) and negative (light)
isosurfaces with isovalues of ±5% of the maximum amplitude for each kernel illustrated. Note
that these kernels are substantially different in shape with those used in the laminar case, as
reported in Figure 12 of Part 1; in particular, note that they are generally more focused in the
region adjacent to the lower wall, likely as consequence of the fuller mean velocity profile about
which the system is linearized in the turbulent case.

4. Estimator gains and the corresponding physical-space kernels

In previous studies the covariance Q has been modeled with a spatially uncorrelated
stochastic forcing, as for example in Högberg et al. (2003a). With that model it proved to
be impossible to compute well resolved estimation gains for more than one measurement
(of ηy). In contrast, the present study models the stochastic forcing Q based on R, as
defined in (2.13) and determined from a DNS database. Basing the stochastic model
on the turbulent statistics makes it possible to render well resolved gains for all three
measurements, ηy, vyy, and p. In Part 1 it is shown that well resolved estimation gains
for the three measurements τx, τz, and p, can be achieved by designing the covariance
model to be more physically realistic. The definition and solution procedure for the state
estimation problem in order to solve for the Kalman filter gains in the estimator in the
present work is identical to that described in Part 1 of this study, to which the reader is
referred for details.

Figure 4 illustrates isosurfaces of the physical-space convolution kernels based on the
statistics of the neglected terms in the linearized model, as determined from DNS. (Note,
however, that these gains are transformed to gains based on ηy, vyy, and p in the estimator
simulations presented in §5). Note that these kernels depicted in Figure 4 are substantially
different in shape from those used in the laminar case, as reported in Figure 12 of Part
1; in particular, note that they are generally more focused in the region adjacent to
the lower wall, likely as consequence of the fuller mean velocity profile about which the
system is linearized in the turbulent case.

The sensor noise, described in §2.2, is a natural “knob” to tune the strength of the
individual measurements as well as their relative strength. Note that the sensor noise level
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Case αη αv αp Q J1/2

1 0.1200 – – I 52
2 0.0037 – – Rf̂1f̂1

52
3 0.0030 0.0030 0.0075 Rf̂ f̂ 53

Table 1. The estimation simulations. For the cases when using one measurement, only the
corresponding α is relevant since the other measurements are excluded from the C-matrix.

will also affect the shape of the estimation gains. In an attempt to make a reasonably fair
comparison between the different stochastic models we consider the following measure

J =

∫ 1

−1

∫ Lx

0

∫ Lz

0

L2
ηy

dxdy dz,

i.e., the integral in all three spatial directions of the gain corresponding to the ηy measure-
ment, Lηy

. Three cases were studied, as shown in Table 1. In all three cases, the relevant
α parameters were tuned so that the integrated strength J is approximately equal. Each
measurement captures different features of the flow field and by this study we want to
characterize what additional information we get when the two new measurements are
added and the covariance of the system accurately modeled, rather than investigating
how the strength is distributed over estimator gains and how that affects the estimation
process. Note that the resulting strength of the gains require no adjustment of the time
step in the extended Kalman filter DNS to run properly.

5. Estimator performance

5.1. Estimator algorithm

In order to quantify the performance of the Kalman filter developed in this work, we run
two direct numerical simulations in parallel. One simulation represents the “real” flow,
where the initial condition is a fully developed turbulent flow field. The other simulation
is the estimated flow field. The real flow is modeled by the the Navier–Stokes equations.
In the estimator simulations we have tested both the Kalman filters (with the state
model being the linearized Navier–Stokes equation) and extended Kalman filter (with
the state model being the full nonlinear Navier–Stokes equation). The initial condition
for the estimator simulations is a turbulent mean flow profile with all fluctuating velocity
components set to zero. In both estimator simulations the volume forcing v, defined in
§1.2, is added. The additional forcing is based on wall measurements and the precomputed
estimation gains. For the Kalman filter simulations we enforce the turbulent mean flow
profile that we linearized about and allow no nonlinear interactions to take place in the
estimator, by scaling down the fluctuations to a sufficiently small amplitude to suppress
nonlinear interactions (This method was necessary with the present version of our DNS
code to enforce a linear simulation).

To evaluate the performance of the Kalman and extended Kalman filters the correlation
between the actual and estimated flow is computed throughout the wall-normal extent
of the domain at each instant of time,

corry(s, ŝ) =

∫ Lx

0

∫ Lz

0
sŝdxdz

(

∫ Lx

0

∫ Lz

0
s2 dxdz

)1/2 (
∫ Lx

0

∫ Lz

0
ŝ2 dxdz

)1/2
, (5.1)
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where s and ŝ represent either u, v, w, or p from the actual and estimated flow, respec-
tively. A correlation of one means perfect correlation whereas zero correlation zero means
no correlation at all.

Another useful quantity to study is the error between the actual and estimated flow
state, defined as

errny(s, ŝ) =

(

∫ Lx

0

∫ Lz

0
(ŝ− s)2 dxdz

)1/2

(

∫ Lx

0

∫ Lz

0
s2 dxdz

)1/2
. (5.2)

The error (5.2) ranges from zero, which means no error between the real and estimated
flow fields, and infinity. However the most pertinent quantity to measure is the total
energy of the error between the real and estimated flow fields defined as

errntot
y (q, q̂) =

(

∫ Lx

0

∫ Lz

0
(q̂ − q)∗Q(q̂ − q) dxdz

)1/2

(

∫ Lx

0

∫ Lz

0
q∗Qq dxdz

)1/2
. (5.3)

since this is the quantity that we, in an average sense, are minimizing for in the construc-
tion of the optimal estimation gains. Operator Q represent the energy inner-product in
(v, η) coordinates (see e.g. Schmid & Henningson 2001).

5.2. One measurement — two stochastic models

To compare the gains based on a spatially uncorrelated stochastic model with the esti-
mation gains based on the stochastic model suggested in this study, we first compare the
performance of the estimator using only the ηy measurement. This is because we only
obtained a well-resolved estimation gain for the ηy measurement when using the spatially
uncorrelated stochastic model.

The correlation between the real and estimated flow, for one measurement, is depicted
in Figure 5 and Figure 6 for the Kalman and extended Kalman filters respectively. The
dashed lines represent the stochastic model developed in this work whereas the dash-
dotted lines represent the spatially uncorrelated stochastic model. The correlation for
the u-component is almost the same close to the wall for the two filters but there is
an increasing difference both for the Kalman and extended Kalman filter as the wall
distance increases. For v, w, and p the difference is larger. In Figure 7 and Figure 8
we can see similar trends for all the primitive variables and for both the Kalman and
extended Kalman filter. We anticipated a more pronounced difference between the two
stochastic models but apparently the importance of the stochastic model is not crucial
for the performance of the ηy measurement, alone.

The correlation for the u-velocity component is close to one (perfect correlation) while
the other components show only weak correlation. This is due to the fact that the stream-
wise disturbance velocity contains more energy than the other components and that with
only the ηy measurement we are missing important information about the flow behavior.

For both the estimators with the present ηy gains and the estimator with gains based
on the previous stochastic model, the correlation and error for the u-component, decay
quickly once we get beyond y+ ≈ 8 and in the center region of the channel both the error
and correlation measures are performing poorly. v, w, and p are clearly not estimated
very well with only the ηy measurement. p is constantly on a low level whereas v and w
experiences a similar decay as u once the wall distance increases.
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Figure 5. The figure shows corry(s, ŝ) for s = u, s = v, s = w, and p obtained using Kalman
filter. The solid line denotes estimation using all three measurements and noise statistics as
discussed in §3. The dashed line denotes the estimator performance using only the ηy measure-
ment. The dash-dotted line is obtained using the spatially uncorrelated stochastic model for
noise statistics.
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Figure 6. The figure shows corry(s, ŝ) for s = u, s = v, s = w, and p obtained using extended
Kalman filter. For a definition of the curves see, Figure 5.

5.3. Three measurements — one stochastic model

The performance of all three measurements combined, with the relative weighting pre-
sented in table 1, are shown as solid lines in Figure 5 – 8. In these figures it is clearly seen
that the correlation and error between the real and estimated flow for all quantities v, w,
and p is greatly improved when the additional measurements are included. The strongest
improvement appears for the pressure, due to the addition of a pressure measurement.

In Figure 9 the total estimation error, averaged in time, is plotted as a function of
wall-normal distance . The thin lines show the Kalman filter results and the thick lines
the corresponding extended Kalman filter results. The improved estimation possibilities
with the stochastic model presented in this study over a spatially uncorrelated one is
clearly seen in Figure 9. The improvement is more pronounced closer to the wall.
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Figure 7. The relative estimation error errny(s, ŝ), defined as in equation (5.2) plotted for
the Kalman filter. The solid line denotes estimation performed with all three measurements
and gains based on turbulence statistics. The dashed line denotes the estimator performance
using only the ηy measurement. The dash-dotted line is the correlation when using the spatially
uncorrelated stochastic model.
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Figure 8. The relative estimation error, defined as in equation (5.2), plotted for the extended
Kalman filter. For a definition of the curves see, Figure 7.

For both the estimator with the present ηy gains and the estimator with gains based
on the previous stochastic model, the correlation and error for the u, v, and w quantities
drop off quickly once we get beyond y+ ≈ 10 and in the center region of channel both
the error and correlation measures are performing poorly.

The total energy of the estimation error displays a transient phase when the two
simulations are started. This transient is depicted in Figure 10 for the Kalman filter
simulation. Closer to the wall the transient is stronger and the error reaches a lower level
than further into the flow domain. The transient is due to the fact that the estimated
flow is initiated with only a turbulent mean flow profile.

The performance of our estimator can be compared with the result reported in Bewley
& Protas (2004), where a turbulent channel flow at Reτ = 180 is estimated from limited
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Figure 9. The total energy of the estimation error is shown as a function of the wall-normal
distance. The solid line denotes the error when all three measurements are applied in the esti-
mator. The dashed and dash-dotted lines represent the estimator performance when using only
the ηy measurement with the stochastic model based on turbulence statistics and the spatially
uncorrelated stochastic model respectively. The thick lines show the extended Kalman filter and
the thin lines the Kalman filter data.
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Figure 10. The transient behavior of the total error energy at y+ = 1.5, y+ = 5.5, y+ = 9.7,
y+ = 31.5, and along the channel centerline for case 3 in table 1. All three measurements are
used together with the Kalman filter.

measurements as discussed in §1.1. The adjoint method is computationally demanding
but gives the optimal estimate of the flow at a certain time with respect to the chosen
objective function. Since the present results are computed for a lower Reynolds number
we can compare only qualitatively the performances. The adjoint simulation results show
the same overall trends both correlation as well as in terms of estimation error.

In Figure 11, an instantaneous plot of the v velocity component is shown at y+ = 9.7
for the flow field and the two different filters (based on three measurements). Similar
structures are present in all three cases. At some instants of time the Kalman filter even
has a better match compared to the extended Kalman filter with the real flow but Figure
11 gives an idea of the general trend. The Kalman filter performance also deteriorates
more quickly as the wall normal distance is increased and the structures are slightly
weaker than in the extended Kalman filter.
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Figure 11. Wall-normal velocity component v plotted at y+ = 9.7 at an instant in time. In the
top figure the flow velocity itself is plotted. The middle plot shows the velocity field reproduced
by the extended Kalman filter, and the bottom plot shows the velocity field reproduced by the
Kalman filter. The contour levels range from −1 to 1, where black and white represent the lower
and upper bound respectively.

6. Summary and conclusions

A key step in the framing the Kalman filter problem is the accurate statistical descrip-
tion of the system dynamics not fully described by the estimator model. The present
paper has shown that, by determining the appropriate second-order statistical informa-
tion in a full nonlinear DNS of the channel flow system, then incorporating this statistical
information in the computation of the estimator feedback gains, an effective estimator
may be built based on all three measurements available at the wall. For a given feedback
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amplitude, this estimator provides a better correlation between the real turbulent flow
and the estimate thereof than the corresponding estimators considered for this problem
in previous work. Significant improvements are obtained, as compared with estimators
based on spatially uncorrelated stochastic models, in terms of both the maximum cor-
relation as well as how far into the channel an accurate correlation extends. Also, the
estimation gains may be transformed to physical space to obtain well-resolved convolu-
tion kernels that eventually decay exponentially with distance from the origin, thereby,
ultimately, facilitating decentralized implementation.

In Part 1 of this study, Hœpffner et al. (2004), the estimation of a perturbed laminar
flow was investigated, and it was shown that an artificial, but physically reasonable,
Gaussian distribution model for the spectral density function was adequate to obtained
effective, well-behaved estimation feedback kernels for the problem of estimating the
perturbed laminar flow. That result, together with the result from the present study for
the problem of estimating turbulence, indicate that the choice of the disturbance model
is quite significant in the estimation problem, but a highly accurate statistical model is
actually not essential.

As expected, the (nonlinear) extended Kalman filter was found to outperform a (linear)
Kalman filter on this nonlinear estimation problem. The estimated state in the Kalman
filter deteriorates more rapidly with the distance from the wall. The extended Kalman
filter captures better the structures further into the domain, both in magnitude and
phase. In terms of both correlation and estimation error, we also observed an approximate
correspondence with the performance of the present extended Kalman filter with the
adjoint-based estimation procedure reported in Bewley & Protas (2004). The adjoint-
based approach is vastly more expensive computationally, and, at least in theory, can
account for the nonlinear dynamics of the system more accurately, so this correspondence
reflects favorably on the performance of the present extended Kalman filter.

The admittedly artificial assumption of the external disturbance forcing f̃ being “white”
in time may be relaxed in future work, “coloring” the noise with the time dynamics of f ,
by performing a spectral factorization of f in both space and time and augmenting the
estimator model to account for the dominant time dynamics in f̃ . This approach, while in
theory tractable for this problem, involves estimators of substantially higher dimension
than the present (which is already large), and might facilitate substantial performance
improvements. Development of this approach is thus deferred for the time being as a
promising area for future work on this problem.
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Högberg, M., Bewley, T. R. & Henningson, D. S. 2003a Linear feedback control and
estimation of transition in plane channel flow. J. Fluid Mech. 481, 149–175.
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