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In applications involving the model-based control of transitional wall-bounded flow sys-
tems, one often desires to estimate the interior flow state based on a history of noisy
measurements from an array of flush-mounted skin-friction and pressure sensors on the
wall. This paper considers this estimation problem, using a Kalman filter based on the
linearised Navier–Stokes equations and appropriate stochastic models for the relevant
statistics of the initial conditions, sensor noise, and external disturbances acting on the
system. We show that a physically relevant parameterisation of these statistics is key to
obtaining well resolved feedback kernels with appropriate spatial extent for all three types
of flow measurements available on the wall. The effectiveness of the resulting Kalman
and extended Kalman filters that implement this feedback is verified for both infinites-
imal and finite-amplitude disturbances in direct numerical simulations of a perturbed
laminar channel flow. The consideration of time-varying feedback kernels is shown to be
particularly advantageous to accelerate the convergence of the estimator from unknown
initial conditions. A companion paper (Part 2) considers the extension of such estimators
to the case of fully-developed turbulence.

1. Introduction

The feedback control of fluid flow systems is a problem that has received growing
attention in recent years and has been approached in a number of different manners. One
approach is to design controls based on physical insight of dominant flow mechanisms, as
by the wave superposition principle (see, e.g. Thomas (1990)). Another approach is to use
adaptive or genetic techniques to attempt to learn an effective control strategy by trial
and error (see, e.g. Lee et al. (1997)). It is also possible to leverage linear control theory,
basing the control algorithm on the linearised Navier–Stokes equations governing small
perturbations to the flow system, a mathematical statement of the control objective,
and a mathematical model of the relevant statistical properties of the unknown initial
conditions, sensor noise, and external disturbances acting on the system. The present
paper follows this latter approach. Recent reviews of related flow control efforts can be
found in, for instance, Bewley (2001), Gunzberger (1996), and Kim (2003).

The problem of linear model-based feedback control based on noisy measurements can
be decomposed into two independent subproblems: first, the state-feedback (a.k.a. full-
information) control problem, in which full state information is used to determine effective
control feedback, and, second, the state estimation problem, in which measurements are
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continuously used to “nudge” a real-time calculation of the flow system in an appropriate
manner such that the calculated flow state eventually approximates the actual flow state.

Once both subproblems are solved, one can synthesize them to control a flow based
on limited noisy measurements of the flow system. The overall performance of the re-
sulting linear feedback control scheme is limited by the individual performance of the
two subproblems upon which it is based. For the application of linear control theory to
wall-bounded flows, though encouraging results have been obtained previously on the
state-feedback control problem (see, for example, Bewley & Liu (1998) and Högberg
et al. (2003)), the development of effective state estimation strategies remained, until
now, largely an open problem. In the present paper, we therefore focus on the state
estimation problem exclusively.

One of the primary challenges of the state estimation problem is that its framing
is based centrally on quantities which are challenging to model, namely, the expected
statistics of the initial conditions, the sensor noise, and the external disturbances acting
on the system. The state estimation problem may actually be thought of as a filtering
problem; that is, the estimator uses the governing equation itself as a filter to extract,
from the available noisy measurements of a small portion of the dynamic system, that
component of the measurements which is most consistent with the dynamic equation
itself. In other words, the estimator uses the governing equation to extract the signal
from the noise, and in the process builds up an estimate of the entire state of the system.
The purpose of the estimator at time t is to filter the measurements gathered prior to
time t to estimate the instantaneous state of the flow field. The purpose of the state-
feedback controller at time t, on the other hand, is to apply forcing to the flow such that
the subsequent evolution of the flow, after time t, exhibits favourable characteristics.
Thus, the controller is based on a metric defining these favourable characteristics (the
objective function), whereas the estimator is based on a model describing, to the extent
that they are known, the statistical properties of the unknown quantities affecting the
system.

Some attention has been paid in the literature to the creative choice of objective
functions for the control problem. Kim & Lim (2000), for example, performed a numerical
experiment which applied body forcing via linear feedback everywhere on the interior of a
turbulent channel flow. This linear feedback was constructed to exactly cancel the linear
coupling term [C in (2.2)] in the nonlinear simulation, with the result that the turbulent
flow relaminarized. This result lends credibility to the idea of using a more sophisticated
objective function which targets this linear coupling (more precisely, one which targets the
non-normality of the system eigenvectors) rather than using an objective function which
simply targets the energy of the flow perturbations directly. The appropriate selection of
the objective function is thus seen to be not a trivial problem, and is closely linked to
our understanding of the relevant flow physics. The problem of disturbance modeling for
the state estimation problem, which is also inherently linked to our understanding of the
relevant flow physics, is perhaps even more subtle.

The importance of appropriate disturbance modeling was previously investigated by
Jovanović & Bamieh (2001a). In this work, a stochastic disturbance model was proposed
which, when used to force the linearized Navier–Stokes equation, led to a simulated
flow state with certain second-order statistics (specifically, urms, vrms, wrms, and the
Reynolds stress −uv) that mimicked, with varying degrees of precision, the statistics
from a full DNS of a turbulent flow at Reτ = 180.

The present work represents the next natural step in this vein, that is, the devel-
opment of appropriate disturbance parameterizations that facilitate the calculation of
well-resolved feedback kernels for the flow estimation problem that both converge upon
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grid refinement and eventually decay exponentially with distance from the origin (that
is, from the corresponding sensor location). These feedback kernels, in turn, facilitate
accurate estimation of the state itself when a simulation of the state estimate is co-
ordinated with wall measurements from an actual flow (or a separate direct numerical
simulation thereof). Further, the tuning of this disturbance parameterization allows for
the tuning of the spatial extent of the resulting feedback convolution kernels in order to
modify the communication architecture required in an “overlapping decentralized” im-
plementation of the resulting estimator in hardware (that is, large-scale implementation
via an interconnected array of identical tiles, each with actuators, sensors, and control
logic incorporated, that communicate only with their neighbors, as described in detail in
Bewley (2001)).

It appears as if little has been accomplished to date in terms of the investigation of
appropriate disturbance models for specifically the flow estimation problem in the pub-
lished literature. Bewley & Liu (1998), Joshi, Speyer & Kim (1999), and Högberg et al.
(2003) all modeled the covariance of the external disturbances at a single wavenumber
pair {kx, kz} in a channel flow with a simple identity matrix after the problem was dis-
cretized in the wall-normal direction. This assumption effectively implies a constant vari-
ance of disturbances at each gridpoint in the wall-normal direction and zero correlation
of the disturbances at different gridpoints above the wall. Unfortunately, this covariance
model does not converge to a resolved covariance distribution as the wall-normal grid
is refined. We now understand that, as a consequence, this model was responsible for
restricting the effectiveness of the resulting estimators in our previous work, and also
led to realization problems that required us to limit the number of wall measurements
that we could account for while still obtaining convergence of the feedback kernels upon
refinement of the numerical grid.

In the present paper, we propose an improved parameterization of the external dis-
turbances (that is, random volume forcing on the interior of the flow domain) that may
be used to model the effects of wall roughness, acoustic waves, and neglected dynamics,
as well as appropriate parameterizations of the unknown initial conditions and sensor
noise. This improved disturbance parameterization converges to a continuous function
upon grid refinement, and allows us to account for all three flow measurements available
at the wall (that is, streamwise and spanwise wall skin friction and wall pressure).

In previous studies, only time-constant feedback kernels have been considered in the
estimator. By introducing time-varying feedback kernels into the estimator, the present
paper incorporates plausible models of the statistics of the unknown initial conditions on
the flow in order to maximize the speed of convergence of the estimator from unknown
initial conditions. As a consequence, the initial transients in the estimation error are
shown to be greatly diminished.

In the present paper, we design and test an estimator for the early stages of transition
in a laminar three dimensional plane channel flow (again, see Part 2 of this study for the
case of fully-developed turbulence). After describing the system of interest, we propose a
stochastic model for the flow’s initial conditions, external disturbances, and sensor noise
in §2.4. An appropriate Kalman filter is designed in §2.5 in order to determine suitable
estimator feedback. After a discussion of the numerical methods employed, we test the
estimator in numerical simulations of the linearized system at isolated wavenumber pairs
in §3. We then inverse Fourier transform the estimator feedback rules determined on
a large array of wavenumber pairs to obtain well resolved, spatially localized feedback
convolution kernels in physical space for all three of the measurable quantities on the wall
(streamwise and spanwise wall skin friction and wall pressure), as discussed in §4.1. The
resulting Kalman filter for the entire three dimensional channel, and an extended Kalman
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filter that additionally incorporates the nonlinearity of the full system, are tested in direct
numerical simulations of the full nonlinear Navier–Stokes system for both infinitesimal
and finite-amplitude perturbations of a laminar channel flow in §4.2 and 4.3.

2. Formulation

2.1. Flow configuration and governing equations

This paper considers the three dimensional flow between two infinite flat plates (at
y = ±1) driven by a pressure gradient in the streamwise (x) direction. Scaling the
time variable appropriately, the mean velocity profile is given by U(y) = 1 − y2. For
computational efficiency, we model the flow as being periodic in the horizontal directions
x and z, using a computational domain of sufficient extent in these directions that this
nonphysical assumption does not significantly affect the statistics of the flow. This ap-
proach allows all variables with spatial variation to be expanded in Fourier series. Thus,
the state vector describing the wall-normal velocity v̂mn(y, t) and wall-normal vorticity
η̂mn(y, t) on the interior of the domain at each wavenumber pair {kx, kz}mn may be
denoted by

q̂mn(y, t) =

(
v̂mn(y, t)
η̂mn(y, t)

)

.

The evolution of the flow can then be written with the linear terms, M and L, on the
left-hand side and the nonlinear terms, N , on the right-hand side, in addition to an
external forcing term êmn to account for unmodeled effects, yielding

d

dt
Mq̂mn + Lq̂mn

︸ ︷︷ ︸

Linear dynamics

=
∑

k+i=m
l+j=n

N(q̂kl, q̂ij)

︸ ︷︷ ︸

Nonlinear coupling

+ êmn(y, t)
︸ ︷︷ ︸

External forcing

, (2.1)

where

M =

(
−∆ 0
0 I

)

and L =

(
L 0
C S

)

. (2.2)

For the remainder of this paper (Part 1), the entire derivation is done in Fourier space,
so the accent (̂·) and subscript (·mn) will be dropped for notational clarity. The operators
L, S, and C relate to the Orr–Sommerfeld/Squire equations and are defined as







L = −ikxU∆+ ikxU
′′ +∆2/Re,

S = ikxU −∆/Re,

C = ikzU
′.

The Laplacian operator is denoted ∆ = D2 − k2, where D and D2 represent first- and
second-order differentiation operators in the wall-normal direction, and k2 = k2x + k2z .
The Reynolds number Re is based on the centreline velocity and channel half-width.
The double convolution sum in (2.1) represents the nonlinear “triad” interactions. The
boundary conditions on v and η correspond to no-slip solid walls

v = Dv = η = 0 at y = ±1.

In the following, the right hand side of (2.1) will be lumped into a forcing function
f(y, t), thereby restricting the flow model to the linear terms, accounting for both the
nonlinear terms and the external disturbances with a stochastic model. The resulting
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flow model can be written as

d

dt
Mq + Lq = Tf(y, t), (2.3)

where the operator

T =

(
ikxD k2 ikzD
ikz 0 −ikx

)

transforms the forcing f = (f1, f2, f3)
T on the evolution equation for the velocity vector

(u, v, w)T into an equivalent forcing on the (v, η)T system (see, e.g. Jovanović & Bamieh
(2001b) for derivation of this transformation).

2.2. Measurements

The choice of the measurements to be taken in order to obtain the state estimate (with-
out knowledge of the initial conditions of the flow) is ultimately a matter of practicality.
In the present work, we will consider an idealised problem in which the continuous dis-
tributions of streamwise and spanwise skin friction and pressure on the wall are available
as measurements in order to estimate the state of the flow away from the wall. This
information is mathematically complete in the following sense: if this information is un-
corrupted by noise and the external forcing on the system is known exactly, the entire
state of the flow (even in the fully turbulent regime, and at any Reynolds number) is
uniquely determined by these measurements at the wall in an arbitrarily small neigh-
bourhood of time t (without knowledge of the initial conditions), as shown by Bewley &
Protas (2003). However, in any practical problem, the measurements are corrupted by
noise, the modeling of the system is not precise, and there are external disturbances on
the system which are not accounted for. Thus, in the practical setting, it is essential to
filter the measurements appropriately to reconcile the noisy measurements of the system
with an approximate dynamic model of the system. The Kalman filter used in the present
paper is a mathematically-rigorous tool to achieve this reconciliation.

In our previous formulations of the estimator problem, as discussed in Högberg et al.
(2003), only the feedback gains using the measurement ηy, the first wall-normal derivative
of η, were used. In §2.4, we develop an improved formulation based on a more realistic
model of the statistics of the external disturbances such that we may now compute
well-behaved feedback kernels that converge upon grid refinement for any measurement
constructed as a linear combination of the state variables and their derivatives. In par-
ticular, the three available measurements at the wall, the streamwise and spanwise wall
skin friction and the wall pressure, are related to the quantities v and η in the state
model as follows







τx = τxy|wall =
1

Re
uy
∣
∣
wall

=
i

Rek2
(kxD

2v − kzDη)
∣
∣
wall

,

τz = τzy|wall =
1

Re
wy

∣
∣
wall

=
i

Rek2
(kzD

2v + kxDη)
∣
∣
wall

,

p = p|wall =
1

Rek2
vyyy

∣
∣
wall

=
1

Rek2
D3v

∣
∣
wall

.

Note that these equations are easily verified using the Taylor series expansions for v(y)
and η(y) near a solid wall, as written out in, e.g. §2.2 of Bewley & Protas (2003). In
the formulation shown in the remainder of §2, for clarity, we focus on the feedback rules
related to measurements made at the lower wall only. The extension of this formulation
to the case in which measurements are taken at both walls of the channel, as considered
in the simulations reported in §3 and §4, is straightforward.
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2.3. Stochastic setting

As described earlier, the modeling of the relevant statistical properties of the stochastic
forcing function f in (2.3), which accounts for the effects of external disturbances on the
system, is one of the key steps in the framing of the present estimation problem.

In the present stochastic framework, the mean of any quantity of interest may be
obtained using the expectation operator E[·], defined as the average over all possible
realizations of the stochastic inputs. In particular, the mean of f is modeled as zero, that
is, E[f ] = 0.

In the present formulation, it is the covariance of f that needs to be modeled carefully.
Since f is a continuous function of the spatial coordinate y, the appropriate definition
of the covariance in this problem is somewhat abstract, as discussed in detail in Bal-
akrishnan (1976). As shown in Balakrishnan (1976), once this abstraction is made, the
resulting Kalman filter in this spatially-continuous formulation is found to be analogous
to its well-known counterpart in the finite-dimensional setting. In order to proceed with
the modeling of the statistics of f , it is necessary to have a clear understanding of what
the covariance means in the spatially-continuous setting.

In the spatially-discrete setting, if u and v are two zero-mean, random vectors of length
n1 and n2 respectively, their covariance Ruv is defined as a matrix of size n1 × n2 such
that Ruv = E[uv∗], where the symbol ∗ applied to a vector or scalar denotes conjugate
transpose. The covariance of a zero-mean random vector u is defined as Ruu = E[uu∗].

To extrapolate these definitions to the spatially-continuous setting (see, e.g. Balakr-
ishnan 1976, p. 267), we make use of inner products with arbitrary test functions chosen
from the same Hilbert spaces as the random functions we are considering. That is, if ξ
and η are two zero-mean random functions in Hilbert spaces H1 and H2 respectively,
then their covariance Rξη is defined such that

〈x,Rξηy〉1 = E[〈x, ξ〉1〈y, η〉
∗
2] ∀(x, y) ∈ H1 ×H2 , (2.4)

where 〈·, ·〉1 and 〈·, ·〉2 denote appropriate inner products in the Hilbert spaces H1 and
H2 respectively. Thus, the covariance Rξη is seen to be a linear operator from H2 to H1;
this is analogous to the spatially-discrete setting, in which the covariance is a matrix
which when multiplied by a rank n2 vector results in a rank n1 vector. Further, if ξ and
η are taken to be simple vectors u and v in the above expression, the inner products may
be defined using the simple form 〈x , y〉 = x∗y , and the spatially-continuous definition of
the covariance reduces immediately to the usual definition given in the spatially-discrete
setting:

〈x , Ruvy〉 = x∗Ruvy

〈x , Ruvy〉 = E[(x∗u) (v∗y)] = x∗E[uv∗]y

}

⇒ Ruv = E[uv∗].

We will subsequently need to express the covariance of a linear transformation of
a random process f of known covariance Rff . Letting g = Hf where H is a linear
differential operator, it follows from (2.4) that

〈x,Rggy〉 = E[〈x, g〉〈y, g〉∗] = E[〈x,Hf〉〈y,Hf〉∗]

= E[〈H∗x, f〉〈H∗y, f〉∗] = 〈H∗x,RffH
∗y〉

= 〈x,HRffH
∗y〉







⇒ Rgg = HRffH
∗, (2.5)

whereH∗ denotes the adjoint ofH; note that the adjoint of a linear operatorH : H1 → H2
with inner products 〈·, ·〉1 and 〈·, ·〉2 on H1 and H2 respectively is defined by the equality

〈y,Hx〉2 = 〈H
∗y, x〉1 ∀{x, y} ∈ H1 ×H2 .



State estimation in wall-bounded flow systems. Part 1. Laminar flows 7

A significant feature of the definition of the covariance is its relation to the expected
value of the energy. In the spatially-discrete setting, defining the energy using an un-
weighted inner product, we may define the trace such that

tr(Ruu) ,
∑

i

〈δji, (Ruu)jk δki〉 =
∑

i

(Ruu)ii

= E[u1u
∗
1 + u2u

∗
2 + . . .+ unu∗n] = E[E(u)],

where E(u) denotes the energy of the vector u. In the spatially-continuous setting, the
corresponding definition is

tr(Rξξ) ,

∫

Ω

〈δ(x− x′), Rξξδ(x− x
′)〉dx′ =

∫

Ω

E
[
〈δ(x− x′), ξ(x)〉 〈δ(x− x′), ξ(x)〉∗

]
dx′

= E
[ ∫

Ω

ξ(x′)ξ∗(x′)dx′
]

= E[E(ξ)].

Accounting for a weighting function in the definition of the energy in these relations is
straightforward.

2.4. Models for the stochastic inputs

The flow system that we desire to estimate is affected by its unknown initial conditions,
the unknown external disturbances that disrupt the evolution of the state, and the un-
known sensor noise that corrupts the measurements. Since the estimator is intended to
converge effectively over a large number of different realizations, a statistical description
(mean and covariance) of these unknown quantities may be used to tune the feedback in
the estimator design. The estimator which we will design, also known as a Kalman filter,
will be optimal in the sense of obtaining the most accurate estimate possible over a large
set of realizations of the system in which the initial conditions, external disturbances,
and sensor noise have the assumed statistical properties.

2.4.1. Modeling of the initial conditions

For the purpose of the present work, we will model the mean of the unknown initial
condition as zero (that is, we assume there is no preferred phase in the initial flow
structures) and its covariance as S0. Since the initial condition in the estimator is always
zero, S0 also represents the covariance of the state estimation error at t = 0.

We want to design an estimator that performs well over a large range of possible initial
conditions. It is natural to assume that the initial conditions are completely “random”,
however, we know from our understanding of the flow physics that there is a tendency
for some specific types of flow disturbances to be present in any given flow. For ex-
ample, Tollmien–Schlichting (TS) waves are likely to be present if the environment is
characterised by acoustic waves, streaks are likely to be present if the environment is
characterised by high levels of free-stream turbulence, and streamwise vortices are likely
to be present if the environment is characterised by wall roughness. The specific ini-
tial conditions which we expect to see at each wavenumber pair in a particular problem
(though at an unknown phase and amplitude), and for which we would like to tune the
estimator to be particularly efficient at capturing, will be denoted here by s = smn(y).

We will model the initial conditions q0 at each wavenumber pair as a linear combination
of a component qs of a specified profile s (but with random magnitude and phase) and
a component qr constructed by a random linear combination of the first p eigenmodes
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ξj = ξjmn(y), normalised to unit energy, of the system matrix M−1L in (2.3) such that

qs = θ0 s , qr =
1

p

p
∑

j=1

θjξ
j ,

where the coefficients θj , j ∈ {0, . . . , p} are uncorrelated complex scalar random variables
with zero mean and unit variance. The initial condition q0 is then modeled as a linear
combination of these two components such that

q0 = c1 (c2qs + (1− c2)qr) .

The design parameter c1 > 0 is used to specify the expected amplitude of the initial
conditions at this wavenumber pair, and the design parameter c2 ∈ [0, 1] is used to
specify the relative importance of the components qs and qr in the initial conditions. The
corresponding covariance of the unknown initial conditions is given by

S0 = Rq0q0 = c1



c2Rss + (1− c2)

p
∑

j=1

Rξjξj



 . (2.6)

Note that we expect the energy of the initial conditions at both large wavenumber pairs
and small wavenumber pairs to be small. We may account for this in the present model
of the initial conditions by allowing c1 to vary in a wavenumber-dependent fashion. In
the present work, we will model this dependence with the function

c1(kx, kz) = ca k
2
c e

−k2
c with k2c = (kx/cx)

2 + (kz/cz)
2,

where the design parameters cx and cz may be tuned to select the peak of the expected
energy of the initial condition in wavenumber space and the design parameter ca scales
the overall amplitude of the initial conditions. Many other assumed forms for c1(kx, kz)
are of course also possible, and may be experimented with in future work.

2.4.2. Modeling of the external disturbances

We will assume the external disturbance forcing f = (f1, f2, f3)
T in (2.3) to be a

zero-mean (E[fj(x, y, z, t)] = 0) stationary white Gaussian process with auto-correlation

E[fj(x, y, z, t)fk(x+ rx, y
′, z + rz, t

′)] = δ(t− t′)
︸ ︷︷ ︸

Temporal

Qfjfk(y, y
′, rx, rz)

︸ ︷︷ ︸

Spatial

,

where δ(·) denotes the Dirac δ-function. The assumption of a “white” time correlation
eases the derivation of the equations for the covariance of the state, and is appropriate
when the characteristic time scales of the external disturbances are short as compared
with the characteristic time scales of the flow system. When this is not the case, the
approach developed herein may be extended to incorporate an additional filter in order
to “colour” the external disturbances with appropriate self-correlation time scales (see,
e.g. Lewis & Syrmos (1995)).

The remaining property to be described is the spatial extent of the two-point, one-time,
auto-correlation of f over the whole domain

Qfjfk(y, y
′, rx, rz) = E[fj(x, y, z, t)fk(x+ rx, y

′, z + rz, t)].

The corresponding quantity in Fourier space is a covariance operator of the form discussed
in §2.3, obtained for any wavenumber pair {kx, kz} via the following integration over the
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Figure 1. Sketch of the assumed covariance of the unknown external disturbance f in Fourier
space at a single wavenumber pair {kx, kz}, taking dy = 0.1 (left), and the variation of the
amplitude of this forcing with wavenumbers kx and kz, taking dx = 0.5 and dz = 3 (right).

homogeneous directions

Rfjfk(y, y
′, kx, kz) =

∫ ∫

Qfjfk(y, y
′, rx, rz)e

−i(kxrx+kzrz)drx drz.

Our model for the covariance of f assumes that the disturbance has a localised structure
in space (i.e. the two-point correlation of the disturbance decays exponentially with dis-
tance) and that the correlations between forcing terms on different velocity components
are zero. Note that the presence of the wall will introduce correlation between the forcing
terms in the streamwise and spanwise directions. Such a correlation can be found in part
2. In the present work, we assume a model for the covariance of the external forcing f
which is of a similar form to that assumed for the covariance of the initial conditions by
taking

Rfjfk(y, y
′, kx, kz) = d1 δjkM

y(y, y′),

where

d1(kx, kz) = da k
2
d e

−k2
d with k2d = (kx/dx)

2 + (kz/dz)
2

and the y variation of Rfjfk is given by the function

My(y, y′) = e−(y−y′)2/(2 dy). (2.7)

Note that we will denote R = Rff = diag(Rf1f1
, Rf2f2

, Rf3f3
) in the sections that follow.

The design parameters dx and dz may be tuned to select the peak of the expected energy
of the disturbance forcing in wavenumber space, the design parameter dy governs the
width of the two-point correlation of the disturbance in the wall-normal direction, and
the design parameter da scales the overall amplitude of the disturbance forcing. The
variation of δjkM

y(y, y′) as a function of y and y′, for the three different values of j and
the three different values of k, is depicted graphically in figure 1(a), and the variation

of k2de
−k2

d as a function of kx and kz is depicted graphically in Figure 1(b). As with
the modeling of the covariance of the initial conditions, many other assumed forms for
d1(kx, kz) are also possible, and may be experimented with in future work.

2.4.3. Modeling of the sensor noise

Each of the three measurements is assumed to be corrupted by sensor noise, modeled
as independent, white (in both space and time), random processes, the amplitude of
which is determined by the assumed quality of the sensors. The covariance of the sensor
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noise vector g can thus be described in Fourier space by a diagonal 3×3 matrix G whose
diagonal elements α2ι are the variances of the sensor noise assumed to be associated with
each individual sensor

Rgι(t),gκ(t′) = δικδ(t− t
′)α2ι ,

where δικ denotes the Kronecker delta. Thus, in the present work, we assume that the
sensor noise is uncorrelated in both space and time.

When the signal-to-noise ratio is low, the measured signal must be fed back only gently
into the estimator, lest the sensor noise disrupt the estimator. When the signal-to-noise
ratio is high, the measured signal may be fed back more aggressively into the estimator,
as the fidelity of the measurements can be better trusted. For a given covariance of the
initial conditions and external disturbances, the tuning of the assumed overall magnitude
of the sensor noise in the Kalman filter design thus provides a natural “knob” to regulate
the magnitude of the feedback into the estimator. Note that an intermediate amount of
feedback is desired in the estimator design: if the feedback is too weak, the estimator will
not converge very quickly or very accurately, and if the feedback is too strong, it may
knock the estimated flow out of the small perturbation neighbourhood assumed in the
linear model used in its design.

2.5. The Kalman filter

Noting that the Laplacian ∆ in the operatorM in the forced linear equation (2.3) may be
inverted by enforcement of the homogeneous boundary conditions on Dv, we may write

q̇ = −M−1L
︸ ︷︷ ︸

A

q +M−1T
︸ ︷︷ ︸

B

f,

and thus the general state-space formulation for the evolution of the flow state q =
qmn(y, t) at each wavenumber pair {kx, kz}mn may be written

{

q̇ = Aq +Bf, q(0) = q0,

r = Cq + g;
(2.8)

note that q is a continuous function of both the wall-normal coordinate y and time t in
this formulation. The measurement vector r is constructed using the matrix C, defined
here as

C =
1

Rek2





ikxD
2|wall −ikzD|wall

ikzD
2|wall ikxD|wall

D3|wall 0



 .

This matrix extracts the two components of wall skin friction and the wall pressure from
q.

We now build an estimator of the analogous form
{

˙̌q = Aq̌ − v, q̌(0) = 0,

ř = Cq̌,
(2.9)

with feedback

v = Lr̃ = L(r − ř). (2.10)

Kalman filter theory, combined with the models outlined in §2.4 for the relevant statis-
tics of the unknown initial conditions q0, the unknown external forcing f , and the un-
known sensor noise g, provides a convenient and mathematically-rigorous tool for com-
puting the feedback operator L in the estimator described above such that q̌ converges to
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an accurate approximation of q. Note that the volume forcing v used to apply corrections
to the estimator is proportional to the “innovation process” r̃ = r− ř, that is, the differ-
ence between the measurements of the actual system and the corresponding quantity in
the estimator model.

The solution of the Kalman filter problem in the classical, finite-dimensional setting is
well known (for a succinct presentation, see, e.g. Lewis & Syrmos (1995) p. 463-470). The
corresponding operator equations applicable here, though more involved to derive, are
completely analogous (see Balakrishnan 1976). Thus, we will not rederive these equations
here. The main results, in both the finite-dimensional and infinite-dimensional settings,
are:

(a) the covariance S(t) = Rqq(t) of the flow state q(t) is governed by the Lyapunov
equation

Ṡ(t) = AS(t) + S(t)A∗ +BRB∗, S(0) = S0, (2.11)

(b) for a given L(t), the covariance P (t) = Rq̃q̃(t) of the state estimation error q̃(t) =
q(t)− q̌(t) is governed by the Lyapunov equation

Ṗ (t) = A0(t)P (t) + P (t)A∗
0(t) +BRB∗ + L(t)GL∗(t), P (0) = S0, (2.12)

where A0(t) = A+ L(t)C, and
(c) the value of L(t) which minimizes the expected energy of the state estimation error

(that is, which minimizes the trace of P (t)) is given by the solution of the differential
Riccati equation (DRE)

Ṗ (t) = AP (t) + P (t)A∗ +BRB∗ − P (t)C∗G−1CP (t), P (0) = S0, (2.13a)

L(t) = −P (t)C∗G−1. (2.13b)

Note that, for a linear, time-invariant (LTI) system (that is, for A, B, C, R, G in-
dependent of time), the covariance of the estimation error, P (t), and the corresponding
feedback which minimizes its trace, L(t), follow a transient near t = 0 due to the effect of
the initial condition S0, eventually reaching a steady state for large t in which Ṗ (t) = 0
and L̇(t) = 0. In order to minimize the magnitude of the transient of the trace of P (t),
it is necessary to solve the differential Riccati equation given above. If one is only inter-
ested in minimizing the trace of P (t) at statistical steady state, it is sufficient to compute
time-independent feedback L by solving the algebraic Riccati equation (ARE) formed by
setting Ṗ (t) = 0 in (2.13a).

2.6. Numerical issues

2.6.1. Spatial discretization

In order to actually compute the feedback in this problem, it is necessary to discretize
the DRE given in operator form in (2.13) and solve this equation in the finite-dimensional
setting. However, in order to be relevant for the PDE problem of interest, the resulting
feedback gains must converge to continuous functions as the numerical grid is refined.

Thus, to proceed, we first need to build the discrete counterparts of the system op-
erators A, B, C, and their respective adjoints as well as the disturbance covariances R,
G, and S0. In the present work, the discrete operators are obtained through enforcement
of the Orr–Sommerfeld/Squire equations at each point of a Gauss–Lobatto grid using a
Chebyshev collocation scheme, taking

fi = f(yi), yi = cos
iπ

N
, i = 0, . . . , N,
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where N+1 is the number of gridpoints in the wall-normal direction. The discrete opera-
tors and differentiation matrices are determined using the spectral Matlab Differentiation
Matrix Suite of Weideman & Reddy (2000). In particular, this suite provides fourth-order
differentiation matrices invoking clamped boundary conditions (f(±1) = f ′(±1) = 0),
using the procedure suggested by Huang & Sloan (1993), to give an Orr–Sommerfeld ma-
trix with satisfactory numerical properties, avoiding unstable or lightly-damped spurious
eigenmodes. The first-order, second-order, and third-order differentiation matrices so ob-
tained, denoted D1, D2, and D3 respectively, are combined according to the equations
given previously to compute the discrete matrices A, B , and C in a straightforward fash-
ion. The calculations reported in this paper use, where needed, the discrete definition for
the adjoint of a matrix, that is, its conjugate transpose. The integration weights W (yj)
for the Chebyshev grid with the Gauss–Lobatto collocation points are computed using
the algorithm from Hanifi, Schmid & Henningson (1996). These weights provide spectral
accuracy in the numerical integration used to assemble the energy measure matrix Q.

2.6.2. Solution of the DRE

The calculation of the differential Riccati equation (DRE) is accomplished in this work
using the Chandrasekhar algorithm developed by Kailath (1973). This elegant algorithm
solves a factored form of the DRE at the heart of the Kalman filter as given by the spatial
discretization of the operator equations in (2.13a)-(2.13b). It is particularly efficient when
these factors are of low rank, which happens to be the case in the present study.

The main idea in the Chandrasekhar algorithm is to solve an evolution equation for
a factored form of the time derivative of the estimation error covariance matrix, Ṗ(t).
Since it is symmetric, Ṗ(t) can be factored as

Ṗ = L1L
∗
1 − L2L

∗
2 = YHY ∗, Y =

(
L1 L2

)
, H =

(
I 0
0 −I

)

, (2.14)

where the rank of L1L
∗
1 is the number of positive eigenvalues of Ṗ and the rank of L2L

∗
2

is the number of negative eigenvalues of Ṗ .
By spatial discretization of (2.13a), differentiation of both sides, and substitution of

the factorisation given above, assuming the system is LTI (that is, that A, B , C , R , and G

are independent of time), it is straightforward to verify that (2.13a)-(2.13b) is equivalent
to the solution of the following system:

{

L̇(t) = −Y (t)HY ∗(t)C∗G−1 , L(0) = −P(0)C ∗G−1 ,

Ẏ (t) = (A + L(t)C )Y (t) , Y (0)HY ∗(0) = Ṗ(0),
(2.15)

where Ṗ(0) is easily determined from the spatial discretization of (2.12) evaluated at
t = 0.

The key to the efficiency of this scheme is to exploit the possibility for an accurate
low-rank approximation of Y . After an eigenvalue decomposition of Ṗ(0) to determine
L1 and L2, we can perform a singular value decomposition of the matrices L1L

∗
1 and L2L

∗
2

and discard the singular vectors associated with small singular values, constructing an
approximation of Y with the remaining singular vectors. In §4, singular values less than
0.01% of the initial Ṗ matrix norm were discarded, resulting in a reduction of the rank
of Y by approximately 75%.

In the present work, time integration of the DRE is performed using a standard explicit
fourth-order Runge–Kutta scheme. When only constant feedback gains are to be used,
we can either march the DRE to steady state using the Chandrasekhar algorithm or
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solve directly the ARE via standard techniques based on Schur factorization (see Laub
(1991)).

2.6.3. Computation of the expected energy

In the discretized setting, the expected energy of the state q can be extracted from
the discrete covariance matrix S by use of the energy measure matrix Q such that
E[E(q(t))] = tr(QS(t)), where E(q(t)) denotes the instantaneous energy of the state q
at time t. The expected energy of the state estimation error q̃ can be found in a similar
manner, E[E(q̃(t))] = tr(QP(t)).

The time evolution of the expected energy may be computed using the Chandrasekhar
method. For example, the expected energy of the state q can be marched forward in
time from E[E(q(0))] = tr(QS0), its value at t = 0, via time integration of d

dtE[E(q)] =

tr(QṠ(t)), where Ṡ = YHY ∗, and where the evolution equation for Y (t) is simply
d
dtY (t) = AY (t), with Y (0) determined by the factorization Y (0)HY ∗(0) = Ṡ(0) and

Ṡ(0) determined by evaluation of (2.11) at t = 0. The expected energy of the state
estimation error q̃ can be found in a similar manner, marching forward in time from
E[E(q̃(0))] = tr(QS0) at t = 0 via time integration of d

dtE[E(q̃)] = tr(QṖ(t)), where

Ṗ = YHY ∗ with, for L(t) specified, Y (t) evolving according to d
dtY (t) = (A+L(t)C )Y (t)

with Y (0) determined by the factorization of Ṗ(0), which itself is determined by evalua-
tion of (2.12) at t = 0.

3. Fourier-space characterization

By Fourier transforming in the x- and z-directions all variables with spatial varia-
tion (that is, the state, the disturbances, the measurements, and the control), the lin-
earized three dimensional estimation and control problems completely decouple at each
wavenumber pair {kx, kz}, as observed in Bewley & Liu (1998). Thus, the present sec-
tion characterizes the performance of the estimator derived in the previous section on
the linearized system in Fourier space at three individual wavenumber pairs {kx, kz} =
{0, 2}, {1, 0}, and {1, 1}, where this performance is characterized most clearly. In §4, we
inverse transform a large array of such feedback gains to physical space, obtaining more
readily implementable spatially-localized three dimensional convolution kernels, and con-
sider their effect on direct numerical simulations of the full nonlinear system.

Unless stated otherwise, the results reported are computed for R = 3000, a subcritical
Reynolds number characterized by transient growth phenomena. The design parameters
for the stochastic model for the initial conditions (see §2.4.1) are chosen to be c2 = 0.5,
ca = 10.9, and cx = cz = 1.7. The design parameters for the stochastic model for the
external disturbances (see §2.4.2) are chosen to be da = 0.09, dx = 0.5, dz = 3, and
dy = 0.1. The design parameters for the stochastic model for the sensor noise (see §2.4.3)
are chosen to be α21 = α22 = 0.002 (for the shear-stress measurements) and α23 = 20 (for
the pressure measurements).

These choices for the design parameters of the stochastic models of the initial condi-
tions, external disturbances, and sensor noise are the result of a combination of para-
metric tuning and physical arguments. For example, the choice c2 = 0.5 reflects a 50%
confidence in the “specific form” of the assumed statistics of the of the initial conditions.
Figure 2 compares the variation with wavenumber of the expected covariance of the ini-
tial conditions and disturbance forcing in the model used in this work; these variations
excite the wavenumber ranges of interest for the estimation of localized disturbances and
the accounting for the early effects of nonlinearity in the transition problem, as studied
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Figure 2. Contour plot of the variation of amplitude of the initial conditions, taking
cx = cz = 1.7 (dashed) and external disturbance forcing, taking dx = 0.5, and dz = 3 (solid), as
a function of the wavenumbers kx and kz. Note that the peak amplitudes are near the design
values of kc and kd, as defined in §2.4.1 and 2.4.2, with reduced amplitudes for smaller and
larger values of kc and kd. The expected covariance of the initial condition is modelled with
equal extent in the streamwise and spanwise directions, while the expected covariance of the
disturbance forcing is tuned for structures that are elongated in the streamwise direction.

in §4.2 and §4.3. The amplitude parameters for the initial condition, ca, and the external
forcing, da, are chosen such that the flow energy initially grows and then slightly decays
to statistical steady state, for the wavenumber pair showing the greatest potential for
transient growth, {kx, kz} = {0, 2}.

The initial conditions used for the tests at isolated wavenumber pairs are the “worst-
case” initial conditions at these wavenumber pairs, i.e. the initial conditions that, lever-
aging the non-normality of the dynamic operator A to the maximum extent possible, lead
to the largest possible transient energy growth. Such initial conditions are of particular
concern in a flow transition scenario, as described in, e.g. Schmid & Henningson (2001).

The plots in this section show the evolution of the expected value of the energy of
both the flow state and the state estimation error for initial conditions, sensor noise, and
external disturbances distributed as described in the stochastic models presented in §2.4.
Thus, these plots can be interpreted as an average over a large number of realizations
of these stochastic inputs. They illustrate the effectiveness of the estimator feedback in
the presence of the types of disturbances for which the estimator feedback was designed,
namely, uncorrelated, zero-mean, random Gaussian distributions of the same covariance
as specified in the estimator design.

3.1. Evolution of the expected energy of the flow state and the state estimation error

Figure 3 shows the evolution of both the expected energy of the flow state and the
expected energy of the state estimation error using time-varying feedback gains for three
cases, each of which including the effect of sensor noise:
1) Nonzero initial conditions with zero external disturbances (dot-dashed curves): the ex-
pected energy of the state estimation error follows an initial transient, eventually tending
exponentially to zero at the decay rate of the least-stable eigenmode of A + LC since
there is no additional excitation. In all flows considered, the expected energy of the state
estimation error is rapidly reduced to over two orders of magnitude below the expected
energy of the flow state.
2) Nonzero external disturbances with zero initial conditions (dashed curves): the ex-
pected energy of the estimation error monotonically increases towards a statistical steady
state. In the flow considered at wavenumber pair {0, 2}, the expected energy of the state
estimation error rapidly approaches a value close to two orders of magnitude below the
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Figure 3. Evolution of the expected energy versus time for three flows of interest at three rep-
resentative wavenumber pairs: (top) {0, 2}, (centre) {1, 1}, and (bottom) {1, 0}. The stochastic
inputs driving each simulation are: (solid) initial conditions plus external disturbances, (dashed)
external disturbances only, (dot-dashed) initial conditions only; note that each simulation ac-
counts for the effect of sensor noise corrupting the measurements. Thick lines represent the
expected energy of the flow disturbance and thin lines represent the expected energy of the
estimation error. Note that for {1, 1}and {1, 0}the thin dashed lines lie under the thick dashed
lines.

expected energy of the flow state, indicating effective estimator convergence. In the flows
considered at wavenumber pairs {1, 1} and {1, 0}, however, the expected energy of the
state estimation error is nearly as large as the expected energy of the flow state itself,
indicating poor convergence of the estimator in these particular flows. This issue is dis-
cussed in §3.2.
3) Both nonzero initial conditions and nonzero external disturbances (solid curves): as
expected, due to the linearity of the system and the additive effects of the stochastic
inputs on the expected energy of the system, this case is given precisely by the sum of
cases (1) and (2).

It is also worth noting that the transient in the expected energy of the state estimation
error is not only of lower amplitude, but is typically much faster than the transient in
the expected energy of the flow state.
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Figure 4. Maximum (thick lines) and statistical steady state (thin lines) of the total expected
energy of the flow (solid) and the estimation error (dashed) over a range of wavenumber pairs
for (a) kx = 0 with varying kz, and (b) kz = 1 with varying kx.

Figure 4 shows how the peak and statistical steady state of the expected energy of the
flow state and state estimation error depend on the wavenumber pair, quantifying the
effects seen in figure 1 for a range of different wavenumbers.

3.2. The difficulty of detecting structures in the centre of the channel with wall sensors

The reason the estimator discussed in the previous section fails to converge effectively in
the flows at wavenumber pairs {1, 1} and {1, 0} when external disturbances are present
is interesting. Bewley & Liu (1998), hereafter referred to as BL98, studied extensively
the Kalman filter problem in the present flow system for the following two cases:

case (i): Re = 10000, {kx, kz} = {1, 0},
case (ii): Re = 5000, {kx, kz} = {0, 2}.

As shown in figure 1(b) of BL98, the leading eigenvectors of A in the {1, 0} case include
several “centre” modes with nearly zero support near the wall†. These modes, which are
absent in the {0, 2} case, would be continuously excited by the external disturbances,
and are nearly impossible to detect with wall measurements even if the sensor noise is
very low. To quantify this notion, the corresponding “modal observation residuals” gκ
are tabulated for both cases in tables 1 and 2 of BL98.

† Note that the shapes of these modes are only weak functions of Reynolds number, so the
same general comments hold true for the Re = 3000 case studied here.
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Figure 5. The wall-normal distribution of the variance in the augmented form of the external
disturbance parameterization. Four cases are shown, corresponding to p = 0, 1, 3, 5.

Because of the presence of these nearly-unobservable centre modes, the estimation
problem is inherently difficult at certain wavenumber pairs when both external distur-
bances and sensor noise are present. Thus, the failure of the Kalman filter developed
here to converge accurately for the externally-disturbed flows in the {1, 0} case and the
{1, 1} case, which is characterized by similar unobservable centre modes, is a reflection
of the fundamental difficulty of this estimation problem when only wall measurements
are employed, and is not a shortcoming of the estimation strategy applied in the present
work.

To investigate the excitation of the flow by external disturbances which do not signif-
icantly excite such centre modes, we may augment the definition of My in (2.7), which
models the wall-normal distribution of the covariance of the external disturbances f , as

My
augmented = C(p)

(
y + y′

2

)2p

My.

The parameter p may be chosen to tune the profile of the external disturbances, with
uniform intensity in y if p = 0 or with intensity increasing near the walls if p > 0, as
shown in figure 5. In the simulations reported here, the coefficient C(p) is selected such
that the total expected energy of the flow is identical in each case.

The effect of this biasing of the external disturbances towards the walls is plotted
in figure 6. For the three wavenumber pairs tested, figure 6 illustrates the wall-normal
distribution of the expected energy of both the flow and the estimation error at statistical
steady state. The flow is forced both with the external disturbance with p = 0 (solid lines)
and p = 5 (dashed lines).

For the wavenumber pair {0, 2}, the biasing of the external disturbance towards the
walls has relatively little effect. In both cases tested, most of the energy of the resulting
flow perturbation is located in the region of high shear, as explained by the lift-up effect.
This perturbation is easily detected by the sensors on the walls, so the corresponding
expected energy of the estimation error is relatively small.

For the wavenumber pair {1, 0}, on the other hand, the biasing of the external distur-
bance towards the walls has a relatively strong influence on where the expected energy
of the flow is located. When excitation is present in the centre of the channel (for p = 0),
it is seen that the expected energy of the flow is relatively large near the centre of the
channel. In this case, the estimator performance is poor, and the value of the expected
energy of the estimation error is relatively large, especially near the centre of the chan-
nel. On the other hand, when the excitation is focused near the walls of the channel (for
p = 5), the so-called “centre modes” are not excited, and the estimator performance is
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Figure 6. The distribution in y of the expected energy at statistical steady state of the flow
(thick lines) and the estimation error (thin lines) for three wavenumber pairs: (top) {0, 2},
(centre) {1, 1}, and (bottom) {1, 0}, and for two different wall-normal distributions of the external
perturbations: p = 0 (solid) and p = 5 (dashed).

very substantially improved, with the expected energy of the estimation error in this case
being almost zero.

The characteristics of the case at wavenumber pair {1, 1} are essentially intermediate
between the two other cases, at {1, 0} and {0, 2}.

These results are further reinforced in table 1, where the total expected energy of the
estimation error is tabulated for p = 0, 1, 3, and 5. When the external disturbances
are uniformly distributed across the channel (for p = 0), the estimator performance is
substantially degraded for the {1, 0} and, to a lesser extent, the {1, 1} cases as compared
to the {0, 2} case, as already seen in figure 6. As the excitation is focused closer to the
walls (that is, as p is increased), the estimator performance is substantially improved, as
the nearly unobservable centre modes are no longer excited.

The flow structures that typically play the dominant role in the transition process (and,
thus, the flow structures which we are most interested in estimating accurately in the
present work) are elongated in the streamwise direction. That is, the modes of maximum
concern in the transition process are the highly nonnormal modes in the neighbourhood
of {kx, kz} = {0, 2}. Fortunately, this is the wavenumber regime that is not characterized
by the problematical centre modes that are difficult to estimate based on wall measure-
ments alone. Thus, the estimator developed and tested here appears to be promising for
estimating the components of the state that are most relevant to the transition prob-
lem even though this estimator is incapable of detecting the so-called centre modes. It
is also significant to point out that, to model the effects of wall roughness in linearized
Navier–Stokes models, it is common practice to tune the parameterization of the exter-
nal disturbances to focus them near the wall, as done here for large values of p. In this
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{kx, kz} {0, 2} {1, 1} {1, 0}

p = 0 28.8 289.5 548.4
p = 1 26.4 112.0 178.4
p = 3 16.3 38.3 43.8
p = 5 12.4 17.9 16.7

Table 1. The total expected energy of the estimation error at statistical steady state for three
wavenumber pairs and four wall-normal distributions of the variance of the external disturbances.
For each case, the magnitude of the external disturbances was scaled so that the total expected
energy of the flow was 1000.
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Figure 7. Comparison of the expected energy of the estimation error using the time-varying
gains (thick lines) and constant gains (thin lines) for three wavenumber pairs: {0, 2} solid, {1, 1}
dash-dot and {1, 0} dash.

setting, the resulting flow disturbances are well estimated at all wavenumber pairs, as
reflected in table 1.

3.3. The utility of time-varying gains in the estimator

The feedback gains L determined by the Kalman filter, computed according to (2.13a)-
(2.13b), are inherently a function of time. Thus, as stated previously, in order to minimize
the trace of P (t) during the transient which ensues after the estimator is turned on, it
is necessary to use time-varying feedback gains. However, for large times, P (t) and L(t)
eventually approach constants as the estimation error approaches statistical steady state.
Thus, if one is not interested in minimizing this transient, one can simply apply constant
feedback gains designed to minimize the expected energy of the state estimation error at
statistical steady state.

It is interesting to compare the possible utility of time-varying gains for the control
and estimation problems. Consider first the problems of optimal control and optimal
estimation over the finite time horizon [0, T ]. As already seen, the optimal estimation
(Kalman filter) problem is solved by a DRE that marches forward in time from t = 0 to
t = T . On the other hand, the optimal control problem is solved by a (closely-related)
DRE that marches backward in time, from t = T to t = 0. For time invariant systems over
a long time horizon (that is, for large T ), the resulting feedback gains for the estimation
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problem exhibit a transient near t = 0 and approach a constant for the remainder of
the march towards t = T , whereas the resulting feedback gains for the control problem
exhibit a transient near t = T and approach a constant for the remainder of the march
towards t = 0. In the limit that T → ∞, the transient in the gains in the control
problem becomes unimportant; however, the transient in the gains in the estimation
problem is still significant, especially if one is concerned with how rapidly the estimator
converges after the estimator is turned on. Failure to appreciate this point can lead to
the implementation of constant-gain estimators which do not converge as rapidly as one
might desire.

In our previous research on dynamic compensation (Högberg et al. (2003)), constant
feedback gains for both the control and estimation problems were used, taking no account
of the transient due to the initial condition in the estimator. The full-state feedback
control problem was found to be solved successfully with this approach for a large number
of relevant flow cases. However, the state estimation problem was not found to be solved
effectively by this approach, and was left as an important open problem.

It is now clear that we cannot expect optimal estimator performance during the initial
transient when using constant estimation gains if the initial condition has a significant
effect on the flow. This can be seen in figure 7, where the evolution of the expected
energy of the estimation error is plotted for the case of constant gains (thin lines) and
the time-varying gains (thick lines). Both the constant and the time-varying gains give
identical expected energy of the estimation error at large times, but the peak in the
expected energy of the estimation error at short times is substantially diminished when
the time-varying gains are employed. By taking the covariance of the initial condition
into account, the utilization of the time-varying gains gives us a direct means to leverage
any knowledge we might have about the expected structure of the initial conditions in
the flow case of interest.

3.4. Relative importance of the different measured quantities

As described in the introduction, the new disturbance parameterization proposed in the
present work allows us now to feed back into the estimator all three types of measurements
available at the wall, that is, the streamwise skin-friction τx, the spanwise skin-friction
τz, and the wall pressure p. Figure 8 explores the relative importance of each of these
individual measurements in the convergence of the estimator for the three wavenumber
pairs studied previously. It is seen that the measurement of τx is the most significant for
the estimator convergence for wavenumber pairs corresponding to streamwise elongated
structures; as mentioned in the last paragraph of §3.2, one might consider these modes
as the ones of maximum concern in the early stages of transition. Physically, one might
say that, in this case, the estimator can leverage the strong streamwise skin friction
footprint associated with the streamwise streaks created be the lift-up of low momentum
fluid by low amplitude streamwise vortices. With the present parameterization (high
expected noise variance for the pressure measurement), the pressure measurement did
not contribute as significantly as the other measurements to the estimation performance.

The evolution in time of the peak amplitudes of the feedback gains for the three
different types of measurements, as well as the variance of the measured signals (that is,
the expected value of the measurement signal squared), is depicted in figure 9 for the
wavenumber pair {0, 2}. It is seen that the transient in the feedback gains due to the
effects of the initial conditions is clearly significant.



State estimation in wall-bounded flow systems. Part 1. Laminar flows 21

0 200 400 600 800 1000 1200 1400
10

0

10
1

10
2

10
3

0 50 100 150

10
−1

10
0

10
1

10
2

0 50 100 150

10
−1

10
0

10
1

Time

E[E ]

E[E ]

E[E ]

Figure 8. Expected energy of the flow (solid thick line) and estimation error when (solid thin
line) all measurements are used, (dashed line) only measurements of τx are used, (dot-dashed
line) only measurements of τz are used, and (dotted line) only measurements of wall pressure
are used, at the wavenumber pairs (top) {0, 2}, (middle) {1, 1}, and (bottom) {1, 0}. Note that
the thin dotted line for {0, 2} lies under the thick solid line.

3.5. The effectiveness of freezing selected gains based on the unsteady solution of the
DRE

The present section attempts to give some practical insight into the behavior of selected
feedback gains chosen from snapshots of the full solution of the DRE. To this end, the
expected energy of the estimation error when using constant gains that were determined
from snapshots of the unsteady solution to the DRE is illustrated in figure 10. It is
seen that, when gains from early in this time evolution are used, the early stages of
the transient are estimated effectively, but there is increased error in the estimate as
statistical steady state is approached. When gains from later in this time evolution are
used, the estimate of the transient is degraded, but the estimate of the statistical steady
state is significantly improved.
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Figure 9. Time evolution of the peak absolute value of the gains and the variance of the
measurements for the wavenumber pair {0, 2}. (a) Peak absolute value of the gains for the
measurements of (dot-dashed) τx, (dashed) τz, and (dotted) wall pressure. (b) Variance of the
measured signal (thick lines) and the measurement error (thin lines), with same line types as in
part (a).
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Figure 10. Energy of the expected estimation error for gains selected from the time-varying
solution to the DRE and applied as constant-gain feedback, tested at the wavenumber pair
{0, 2}. Gains are selected from times 20, 40, 60, and 80 (solid lines, with later times in the
direction of the arrow), as compared with the (constant) solution of the ARE (◦) and the full
(time-varying) solution of the DRE (+).

4. Physical-space characterization

In the previous section, the estimator was tested in the linear setting in Fourier space
at individual wavenumber pairs. In this section, we inverse transform the gains computed
on a large array of wavenumber pairs to obtain spatially-localized convolution kernels in
physical space (§4.1). We then investigate the estimation (in physical space) of two flows
of interest, one at very small amplitude, in which nonlinear effects may be neglected
(§4.2), and one at a finite amplitude, in which nonlinear effects are significant (§4.3).
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4.1. Physical-space feedback convolution kernels

The feedback gains for the estimator, as formulated in §2 and tested at individual
wavenumber pairs {kx, kz}mn in §3, are functions of the wall-normal coordinate y. By
computing such feedback gains on a large array of wavenumber pairs and then perform-
ing an inverse Fourier transform in x and z, three dimensional (physical-space) feedback
convolution kernels are obtained. Such convolution kernels relate the measurement at a
given sensor location on the wall to the forcing of the estimator model in the vicinity of
that point, and eventually decay exponentially with distance far from the corresponding
sensor. For further discussion of the interpretation of such convolution kernels, the reader
is referred to Bewley (2001) and Högberg et al. (2003).

The results presented in this section were computed with p = 0, i.e. assuming a constant
amplitude of the external disturbance forcing in the wall-normal direction.

4.1.1. Time variation of the kernels

To illustrate the time variation of the kernels computed via solution of the DRE, the
evolution in time of the kernels corresponding to the measurement of the streamwise
skin friction is shown in figure 11. Note that the shape of this kernel varies rapidly near
t = 0, then gradually approaches a steady-state. Also note that, near t = 0, the kernel is
similar in its streamwise and spanwise extent, but, as time evolves, the kernel becomes
elongated in its streamwise extent. This is consistent with the fact that streamwise elon-
gated structures are persistent in time and typically dominate such flows.

4.1.2. Steady-state shapes of the kernels

The time-varying kernels computed via the solution of the DRE eventually converge to
steady-state. Figure 12 shows these steady-state shapes for each of the three measurement
and the two evolution equations. Note the close correspondence between the steady-state
kernels for the τx measurement in figure 12 and the corresponding kernels at t = 60 in
Figure 11.

It is important to note that the spatial extent of the convolution kernels is related,
to some degree, to the correlation length scales chosen during the disturbance param-
eterization defining the estimation problem. Specifically, the parameters dx, dy, and dz
parameterizing the correlation length scales of the disturbances in §2.4.2 have a direct ef-
fect on the spatial extent of the present kernels. For example, figure 13(a) shows, for three
different values of dz, the spanwise extent of the pressure kernel forcing the streamwise
velocity component of the state estimate, integrated in the streamwise and wall-normal
directions. It is clear that, when designing feedback for disturbances which are more
“spread out” in the spanwise direction (that is, disturbances with greater two-point cor-
relation length scales in the spanwise direction), the corresponding convolution kernel
has a broader spanwise extent. It is also seen that this broader kernel has a lower peak
amplitude, since the corresponding forcing is more distributed.

The streamwise extent of the kernel is less sensitive to the streamwise correlation
length scale of the disturbances, but is a strong function of the Reynolds number. In a
flow with a higher Reynolds number, the effect of flow advection is more pronounced, and
information from wall sensors can be related to the interior flow structures responsible
for this wall footprint that have since advected further downstream. This effect can be
clearly seen in figure 13(b), which shows the same kernel as in figure 13(a) but integrated
in the spanwise and cross-flow directions for three different Reynolds numbers.
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Figure 11. The time-varying kernel for times (top to bottom) t = 0, 15, 30, 45, and 60, relating
the streamwise component of the shear stress measurement at the point {x = 0, y = −1, z = 0}
on the wall to the estimator forcing on the interior of the domain for the evolution equation for
the estimate of (left) (v) and (right) (eta). Visualised are positive (dark) and negative (light)
isosurfaces with isovalues of ±5% of the maximum amplitude for each kernel illustrated.
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Figure 12. The steady-state convolution kernels relating the (left) τx, (centre) τz, and (right)
p measurements at the point {x = 0, y = −1, z = 0} on the wall to the estimator forcing on
the interior of the domain for the evolution equation for the estimate of (top) v and (bottom)
η. Visualised are positive (dark) and negative (light) isosurfaces with isovalues of ±5% of the
maximum amplitude for each kernel illustrated.
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Figure 13. Decay of the pressure kernel forcing the streamwise velocity component of the state
estimate, (a) integrated in the streamwise and wall normal direction for (solid) dx = dz = 0.2,
(dashed) 0.7, and (dot-dashed) 1.3, and (b) integrated in the spanwise and wall-normal directions
for (solid) Re = 3000, (dashed) 2000, (dot-dashed) 1000.

4.2. Estimation of an infinitesimal localized flow perturbation

The localised flow perturbation studied by Henningson, Lundbladh & Johansson (1993)
is now used to test the convergence of the estimator in physical space. In this section,
we will consider the direct numerical simulation of an infinitesimal flow perturbation, so
that nonlinear effects in this section can effectively be neglected.

Recall that the estimator initializes the state estimate as zero; that is, it assumes no
a priori knowledge of the location of the initial flow perturbation. In the following, we
explore different models for the assumed covariance of the initial estimation error by
varying the design parameter c2 in (2.6). This parameter effectively reflects our level
of confidence in our knowledge of the relevant statistical properties of the initial con-
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Figure 14. Energy content (in Fourier space) of the initial condition for the case studied in
§4.2 & §4.3.

ditions, ranging from 0.05 (little specific knowledge of the statistical properties of the
initial conditions) to 1 (accurate knowledge of these statistics, but no knowledge of the
actual location of the initial flow perturbation). For the simulations reported here, the
exact initial condition of the flow perturbation, described below, is used as the “specific”
component s in the parameterization of the initial covariance of the estimation error,
P (0), for the purpose of the computation of the feedback kernels.

The external disturbance forcing of the flow considered in this section is taken as zero,
so the resulting simulation might be characterized as a “deterministic” case with no
stochastic forcing. The initial condition of the flow considered in this section consists of
an axisymmetric disturbance of the form







ψ =
1

2
εf(y)r2e−(r/l)

2

,

f(y) = (1 + y)2(1− y)5,

(u, v, w) = (−
x

r2
ψy,

1

r
ψr,−

z

r2
ψy).

(4.1)

Here (x, y, z) are the streamwise, wall-normal, and spanwise coordinates respectively,
r2 = x2 + z2, and (u, v, w) are the corresponding velocity components. The horizontal
extent of this perturbation may be adjusted with the parameter l, which is set equal to 1
for the presented simulations so that the maximum energy of the initial flow perturbation
in Fourier space is at the wavenumber pairs showing the greatest transient energy growth,
as illustrated in figure 14. The parameter ε scaling the amplitude of the initial flow
perturbation is taken as 0.001.

Five different estimators, as formulated in the previous sections with feedback gains
computed by selecting c2 = 0.05, 0.1, 0.25, 0.5, and 1 respectively, were tested on the
problem of estimating this flow. It is seen in figure 15 that the variation of c2 between 1
and 0.25 had a relatively small effect on the resulting estimator performance, and that
all four of the estimators tested in this range significantly outperformed the estimator
that used only the steady state kernels (dashed line), which does not depend on the pa-
rameterization of the statistics of the initial conditions. On the other hand, the estimator
in the case with c2 = 0.05 significantly underperformed the others, indicating that, when
no useful information is available concerning the statistics of the initial conditions, one
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Figure 15. The time evolution of the energy of an infinitesimal localised flow perturbation
(thick solid line) and the energy of the estimation error of the same flow using (dashed line) the
steady state kernels determined from the solution of the ARE as well as (thin solid lines) a gain
scheduled set of kernels computed using values of c2 = 0.05, 0.1, 0.25, 0.5, and 1, increasing in
the direction of the arrow. Note that the energy E has been normalized by energy of the initial
flow perturbation.

might be better off simply using the steady-state kernels computed via solution of the
ARE.

Figure 16 visualizes the evolution of this flow perturbation (left) as it evolves from
the initial conditions provided, as well as the evolution of the state estimate (right)
as it evolves from the initial condition of zero and is forced by the feedback of the
measurement error term as formulated in (2.9)-(2.10). It is seen that, by time t = 60, all
of the major features of the flow are apparently well reproduced by the state estimate.
Additionally, as seen in figure 15, the time t = 60 is rather early in the evolution of the
flow perturbation—the energy of the flow perturbation is still growing substantially at
this point, while the energy of the state estimation error is by now decaying exponentially,
indicating successful convergence of the estimator.

4.3. Estimation of a finite-amplitude flow perturbation

We now test the same estimator as used previously on the problem of estimating a flow
with the same initial conditions as considered in §4.2, but with an initial amplitude now
almost an order of magnitude larger, such that nonlinear effects play a significant role.
We take ε = 0.00828, which corresponds to a maximum wall normal velocity of 0.0117
at t = 0 (this is approximately ≈1.2% of the maximum velocity of the mean flow).

As in §4.2, the direct numerical simulation reported here used the code described in
Lundbladh et al. (1992), which uses a pseudo-spectral scheme with Fourier, Chebychev,
and Fourier techniques in the streamwise, wall-normal, and spanwise directions respec-
tively. The time advancement was a third order Runge–Kutta method for the nonlinear
terms and a second order Crank–Nicolson method for the linear terms. The box size is
48× 2× 24 and the grid resolution is 96× 65× 192.

As mentioned in the third paragraph of §3, the estimator used in this work has already
been designed to handle well the leading-order effects of nonlinearity. Since we know from
Henningson et al. (1993) that nonlinear effects will be most pronounced at wavenumber
pairs with lower kx and higher kz than the initial conditions, we have tuned the covari-
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Figure 16. Evolution of a localised disturbance to the state (left) and the corresponding state
estimate (right) at time t = 0 (top), t = 20 (middle), and t = 60 (bottom), computed with
c2 = 0.08. Visualised are positive (light) and negative (dark) isosurfaces of the streamwise
component of the velocity. The isovalues are ±10% of the maximum streamwise velocity of the
flow during the time interval shown.
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ance of the external disturbance model upon which the estimator is based to account
specifically for unmodeled dynamics at these wavenumbers, as depicted in figure 2. The
model for the external disturbances accounts here for a forcing of higher amplitude than
for the tests on single wavenumber pairs of §3, with da = 0.68, and located closer to the
walls, with p = 1. With this choice of parameters, the expected flow energy grows due to
the initial condition, and continues to grow due to the forcing f , in a way similar to the
nonlinear evolution of the flow.

The evolution of the energy of the state and the estimation error for both the moderate-
amplitude case (§4.3) and the small-amplitude case (§4.2) are plotted in figure 17. To
facilitate comparison, all curves have been normalized to unity at t = 0. Note the signifi-
cant difference in the normalized energy evolution of the state in the two cases considered
(compare the thick solid line and the thick dashed line); this reflects the significant effects
of nonlinearities in the moderate amplitude case. For both cases, the initial stage of the
evolution (during which nonlinear effects are fairly small in both cases) is well estimated
(thin lines). As the moderate-amplitude perturbation evolves and its amplitude grows,
nonlinear effects become significant, and the performance of the linear estimator (thin
solid line) is degraded as compared with the performance of the linear estimator in the
small-amplitude case (thin dashed line).

The Kalman filter is an “optimal” estimator (in several rigorous respects—see Ander-
son & Moore (1979) for a detailed discussion) in the linear setting. As seen in figure 17
and discussed in the previous paragraph, when a Kalman filter is applied to a nonlinear
system, its performance is typically degraded, due to the fact that the linear model upon
which the Kalman filter is based does not include all the terms of the (nonlinear) equa-
tion governing the actual system. A common (though somewhat ad hoc) patch which
partially accounts for this deficiency is to reintroduce the system nonlinearity to the es-
timator model after the Kalman filter is designed. This approach is called an extended
Kalman filter. This type of estimator is identical to the Kalman filter except for the
presence of the system’s nonlinearity in the estimator model. This addition makes some
sense: if the estimate of the state happens to match the actual state, no feedback from
measurements is required for the extended Kalman filter to track the actual flow state.
This is not the case for the standard (linear) Kalman filter. As seen clearly in figure 17,
the extended Kalman filter (thin dot-dashed line) enjoys a substantial performance im-
provement compared with its standard Kalman filter counterpart (the thin solid line) for
estimating finite-amplitude flow perturbations when nonlinearities in the system model
are significant.

5. Conclusions

A canonical feedback control problem in fluid mechanics, which undoubtedly sets the
stage for several follow-on flow control problems that incorporate greater geometric com-
plexity, is the feedback control of a near-wall flow system based on limited noisy measure-
ments from flush wall-mounted sensors in order to stabilize the flow and inhibit transition
to turbulence. In such problems, it is natural to apply model-based linear control theory,
as the equations of motion of the system are well known and the linearization of these
equations are valid, at least during the early stages of the transition process when all
flow perturbations are small. The mathematical framework for the linear control theory
we have chosen to apply in the present study, commonly called “optimal” or “H2” con-
trol theory, is well known in both the finite- and infinite-dimensional setting. However,
the fact that the flow system is infinite dimensional and that regularity issues play a
very subtle role in the well posedness of this control problem in the infinite-dimensional
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Figure 17. Evolution of the normalized flow energy (thick lines) and normalized estimation
error energy (thin lines) for the case with moderate-amplitude initial conditions (solid) and
low-amplitude initial conditions (dashed). The evolution of the normalized estimation error
energy for the extended Kalman filter in the case with moderate-amplitude initial conditions
is also plotted (thin dot-dashed line), illustrating a significant improvement as compared with
the performance of the corresponding Kalman filter (thin solid line) when nonlinearities are
significant.

setting, compounded by the fact that the theory of well posedness of the equations of
motion of the system of interest (that is, the three dimensional Navier–Stokes equation)
is not yet even complete, leads to some peculiar challenges in the well-posed framing and
subsequent numerical solution of this challenging flow control problem.

Via the so-called Separation Principle, such linearized flow control problems in the
optimal setting break up into two independent subproblems: control of the flow with
whatever actuators are available based on full state information, and estimation of the
full flow state with whatever sensors are available. Once both subproblems are solved
effectively, they may be combined to develop a dynamic compensator to control the
flow system using limited actuation authority (with, for example, actuators mounted
on the walls) based only on limited noisy measurements of the flow (with, for example,
sensors mounted on the walls). In previous work, excellent results had been obtained
on the full-state feedback control problem, but certain unresolved difficulties remained
on the estimation problem. The present work thus focused exclusively on the estimation
problem.

The first important development in this work was the introduction of a physically
relevant parameterization of the external disturbances acting on the system that con-
verges upon refinement of the numerical grid. This disturbance parameterization is fairly
generic, and can easily be used to leverage one’s physical insight concerning the initial
conditions likely to be encountered in a given flow (for example, Tollmien–Schlichting
(TS) waves, streaks, or streamwise vortices). Also, the disturbance parameterization can
be tuned in order to modify (at least, to some degree) the spatial extent of the resulting
convolution kernels.

Using this disturbance parameterization, together with appropriate parameterizations
of the initial conditions and the measurement noise, feedback gains for the estimation
problem were computed (using a efficient Chandrasekhar method) for the near-wall flow
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system in Fourier space on a large array of (decoupled) wavenumber pairs {kx, kz},
then inversed transformed to obtain physical-space convolution kernels. The improved
disturbance parameterization proposed in this study facilitated, for the first time, the
computation of measurement feedback gains in the discretized problem that converged
upon grid refinement (and thus are relevant for the infinite-dimensional problem upon
which the numerical problem solved in the computer was derived) for all three types of
measurements that are available on the wall (that is, streamwise and spanwise wall skin
friction and wall pressure).

The second significant development in this work was the recognition that for the prob-
lem of transition control, though time-invariant feedback gains (computed from a cor-
responding algebraic Riccati equation) are sufficient for the full-state feedback control
problem, time-varying feedback gains (computed from a differential Riccati equation)
are necessary for the estimation problem in order to minimize the initial transient in the
estimation error when the estimator is turned on.

The estimator feedback rules that resulted from these two developments were tested
extensively in both in Fourier space (in the linearized setting) and in physical space (in
direct numerical simulations of both infinitesimal and finite-amplitude disturbances for
which the effects of nonlinearity are significant). The estimator was shown to perform well
for all cases studied except when the external disturbances excited centre modes, which
can happen sometimes for wavenumber pairs with relatively large streamwise component
(that is, for modes which are relatively large in their spanwise extent). Fortunately, it
was recognized that such cases are not the primary cases of interest in most transition
scenarios. It was also found that, when the flow perturbations were large enough that the
nonlinearities of the system were significant, an extended Kalman filter which incorpo-
rated the system nonlinearity in the estimator model outperformed the standard (linear)
Kalman filter.

The reader is referred to Part 2 of this study for a summary of recent work considering
the extension of such estimation strategies to the problem of fully-developed near-wall
turbulence.
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