
Computation of temporal and spatial stability for parallel flows

Jérôme Hœpffner

In this note, I discuss how to compute in Matlab the temporal and spa-
tial stability of a parallel flow. The code is available on my home page at
www.fukagata.mech.keio.ac.jp/∼jerome/web/codes.php, treating the stability of the mixing
layer with an hyperbolic tangent base profile. The presentation is made such that it is easy to see
the similarities between the two types of stability analyses.

The Navier-Stokes equations linearized about the base flow profile U in two-dimensions is

ut + Uux + U ′v = −px + ∆u/Re,

vt + Uvx = −py + ∆v/Re,

ux + vy = 0

where subscripts x, y, t denote partial differentiation, U ′ is the y derivative of the base flow profile and ∆ is the
Laplacian. Rewriting this equation in operator form, we have

0 =

−
 ∂t 0 0

0 ∂t 0
0 0 0

+

 −U∂x + ∆/Re U ′ −∂x

0 −U∂x + ∆/Re −∂y

∂x ∂y 0

 u
v
p


where ∂{x,y,t} denote the partial derivative operators.

We now consider normal modes, that is we assume an oscillating behaviour in x and time of the flow solution

u = û(y)eikx−iωt (1)

where û is the amplitude function of u in y, k is the spatial wavenumber (in x) and ω is the temporal pulsation. The
exponential structure in (1) allows the solution to oscillate and grow/decay in space and time, depending on the real
and imaginary parts of k and ω. In the temporal analysis, the solution grows/decay and oscillates in time but only
oscillate in space: k ∈ R is given, and one obtains ω from the dynamic equations. In the spatial analysis, one assume
that the solution only oscillates in time at a given spatial position, but is allowed to grow/decay and oscillate in space:
ω ∈ R is given, and k is obtained from the dynamics equations.

Injecting (1) in the dynamic equations, we can replace

∂t → −iω,

∂x → ik,

∂xx → −k2.

We obtain

0 =

−ω

 −i 0 0
0 −i 0
0 0 0


︸ ︷︷ ︸

E

+

A︷ ︸︸ ︷ ∂yy/Re U ′ 0
0 ∂yy/Re −D
0 D 0


︸ ︷︷ ︸

A00

+k

 −iU 0 −i
0 −iU 0
i 0 0


︸ ︷︷ ︸

A1

+k2

 −I/Re 0 0
0 −I/Re 0
0 0 0


︸ ︷︷ ︸

A2


 û

v̂
p̂


︸ ︷︷ ︸

q̂

where we have explicitely decomposed into operators that multiply ω and the different powers of k. This equation is
the dispersion relation. If k is given, ω is the eigenvalue of a generalized eigenvalue problem

ωEq̂ = Aq̂,

whereas if ω is given, then k is the eigenvalue of a polynomial eigenvalue problem

0 = (A0 + kA1 + k2A2)q̂, (2)

with A0 = −ωE + A00. In Matlab, this last equation can be solved as such using the function polyeig, with the
code k=polyeig(A0,A1,A2). In general, the direct solution of polynomial eigenvalue problems can be heavy. For



2

the present case, we can transform the polynomial eigenvalue problem into a generalized eigenvalue problem, to be
quickly solved with eig or eigs. To do this, we augment the system with the variable ĥ = kq̂

0 =
(

A0 0
0 I

)
︸ ︷︷ ︸

A0

(
q̂

ĥ

)
+ k

(
A1 A2

−I 0

)
︸ ︷︷ ︸

A1

(
q̂

ĥ

)

where the first row is (2) and the second row enforces the definition of ĥ. In Matlab the solution of this equation is
written k=eig(AA0,-AA1).

We can simplify a little further this expression since k2 does not multiply the pressure. We only need to augment
the system with kû and kv̂, to obtain the final system

0 =




A0

I

I


︸ ︷︷ ︸

A0

+k


−I/Re

A1 −I/Re

−I

−I


︸ ︷︷ ︸

A1

.




û

v̂

p̂

kû

kv̂



which we solve using eig for the eigenvalues k and the associated eigenvectors.


