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A drop impacting a target cut out in a thin polymer film is wrapped
by the film in a dynamic sequence involving both capillary forces and
inertia. Different 3D structures can be produced from a given target
by slightly varying the impact parameters. A simplified model for a
nonlinear dynamic Elastica coupled with a drop successfully explains
this shape selection, and yields detailed quantitative agreement with
experiments. This first venture into the largely unexplored dynam-
ics of elasto-capillary assemblies opens up the perspective of mass
production of 3D packages with individual shape selection.

Capillary forces exerted by a water drop are sufficient to
strongly deform thin elastic objects such as carbon nan-

otubes or biological filaments [1, 2] or even to wrinkle thin
polymer sheets [3]. Elasto-capillary interactions are abun-
dant in Nature and are responsible for phenomena such as
lung airway collapse [4] and the clustering of insect bristles
[5, 6]. They are relevant to a number of applications at the
micrometer or nanometer scale, such as MEMS [7, 8, 9], mass
production of non-spherical lenses [10], or drug delivery [11].
On the other hand, drop impact is one of the most com-
mon illustration of fluid mechanics in everyday life, having
practical applications as diverse as pesticide delivery [12] or
polymer inkjet printing for flexible electronics [13]. Impact
and splash of droplets have been studied for more than a

century but only a few studies have addressed the case of
a compliant substrate, and those are limited to small defor-
mations [14]. Here, the impact of a drop on a very flexible
target is used to produce millimeter-size three-dimensional
structures instantly. We show that impact allows a gain of
five orders of magnitude in the fabrication time as compared
to a previous method based on evaporation [15]; in addition,
we unveil the possibility to select the shape of the structure,
by tuning the impact parameters. When scaled down and
combined with inkjet technology that operates at similar di-
mensionless numbers, this set-up opens up the possibility of
mass production of individualized 3D packings at the submil-
limetric scale.

In our experiments, the flexible targets are cut out from
thin PDMS sheets. Such polymer films, naturally exhibiting
a non-wetting behavior with a water contact angle close to
110◦, are treated to enhance contact line pinning (see Meth-
ods for fabrication details). The target is laid down on a
super-hydrophobic surface, which by repelling water confines
the drop onto the target. A water drop of controlled volume
is released from a given height, thereby allowing control of
the impact velocity. For well-chosen impact parameters, we
observe the formation of an instant capillary origami. This is
demonstrated in the experiment of figure 1,
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Figure 1. Instant capillary origami, obtained with a water droplet of radius R = 1.55 mm impacting a thin triangular polymer sheet with thickness h = 55 µm at
velocity U = 0.53 m · s−1. This time sequence reveals that encapsulation results from the interplay between the motion of fluid interface by capillary forces, and the large,
dynamic deformations of the film.

where a drop impacts at its center a triangular target of
width 7 mm with velocity U = 0.53 m ·s−1. Just after impact,
the drop spreads out over the target up to a maximal extent
where inertia is balanced by the restoring action of capillar-
ity. Next, surface tension drives a flow towards the center of
the drop. This causes the rebound of the drop [16], and of
the elastic film that sticks to it. While in free fall above the
ground, the elastic sheet quickly wraps the drop. An elasto-
capillary bundle with a tetrahedral shape is formed, and falls

down to the ground. The whole sequence takes place in 40 ms,
which is the typical duration of an hydrophobic rebound [16].
Reserved for Publication Footnotes

www.pnas.org/cgi/doi/10.1073/pnas.0709640104 PNAS Issue Date Volume Issue Number 1–8



When mediated by drop impact, encapsulation is thus con-
siderably faster than when driven by evaporation [15] which
typically requires half an hour.

Formation of the instant origami is governed by several
lengthscales. Let B = E h3/(12(1−ν2)) be the bending mod-
ulus of the film, E its Young’s modulus, ν its Poisson’s ratio,
h = 55 µm its thickness, L its length, µ = 51.8 10−3 kgm−2

its mass per unit area, g the acceleration of gravity, and
γ = 72 mN.m−1 and ρ = 1000 kg.m−3 the fluid’s surface ten-
sion and density. In all our experiments, the initial drop radius
is R = 1.55 mm. Wrapping into a tightly packed structure is
made possible by the fact that this radius R is both smaller
than the gravito-capillary length �gc = (γ/ρg)1/2 � 2.7 mm

for the drop to remain spherical, and larger than the elasto-
capillary length �ec = (B/γ)1/2 � 0.55 mm above which
capillary forces can make slender objects buckle [1, 6, 15]. In
addition, gravity is important as the size L of the target is
millimetric, and comparable to the elasto-gravitational length
�eg = (B/(µ g))1/3 � 3.5 mm above which gravity bends a
cantilever beam. These lengthscales are all relevant, and com-
parable: encapsulation results from the mixed effects of grav-
ity, elasticity and capillarity.

Drop impact, more than just speeding up elasto-capillary
wrapping, also allows for final shape control. A typical il-
lustration of this shape selection mechanism is presented in
figure 2, and in Supplemental movies S2 and S3.

2 mm

(a)

(b)

Figure 2. A flower-shaped target reveals the possibility of pattern selection based on impact velocity U . Radius of the drop is R = 1.55 mm in both experiments, target
width is L = 10 mm and Ub > Ua. (a) For low impact velocity, Ua = 0.68 m · s−1, a cylindrical bundle is formed, having two-fold symmetry. (b) At higher velocity,
Ub = 0.92 m · s−1, the drop spreads more widely and almost wets the entire surface of the film; a pyramidal wrap is formed, having four-fold symmetry.

In this experiment, a drop impacts a small flower-shaped
film at its center. For a fixed drop radius, different folding
scenarios can be observed depending on the impact velocity.
At low impact speed, spreading of the drop is limited, and the
final pattern is the cylindrical folding of figure 2a. At higher
speeds, the drop quickly embraces the entire surface of the
sheet, and upon retraction a pyramidal wrap is obtained, see
figure 2b. Different instant origamis can thus be obtained by
simply tuning the velocity of impact. A similar selection can
be observed with other target shapes. In the case of rectan-
gular films, we observed a competition between two folding
modes, one along the length of the rectangle and another one

along its width. The pattern can be selected by varying not
only the velocity but also the position of impact. The role of
these two parameters is investigated in detail next.

The phenomenon of dynamic elasto-capillary encapsula-
tion can be carried over to a 2D geometry where it is consider-
ably simpler to analyze. We carried out a series of systematic
experiments using as a target a long and narrow rectangu-
lar strip of width w = 2 mm, length L = 5 cm, such that
h � w � L. For this narrow strip, L/�eg = 14.3. This 2D
setting is sketched in figure 3a. First it simplifies the geometry
by suppressing the 3D aspects of folding such as the forma-
tion of singular cones and ridges visible in the final frame in
figure 2b. Secondly it separates the fluid and solid time scales,
as we show next.

2 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Figure 3. Comparison of experiments (a,b) and simulations (c,d) in a 2D geometry. (a) In these experiments, a drop impacts a long, thin polymer strip laying down on a
substrate, at a variable distance x from its end, and with variable impact velocity U . Strip dimensions are L = 5 cm and w = 2 mm, and drop radius is R = 1.55 mm.
(b) Phase diagram showing the outcome of the experiment: non-encapsulated drop (open circles), encapsulated drop (filled dots), or encapsulated drop with the help of a
secondary drop obtained by pinch-off (stars). (c) Numerical model of a 2D dynamic Elastica coupled with a quasi-static, incompressible fluid with surface tension. (d) Phase
diagram for the Elastica model. In (b,d), typical final shapes are shown in inset. The time sequences of a few selected experiments, labelled A, B, C and D here, are compared
in figures 4 and 5. During the simulation run labelled D in (d), the impact parameters are changed to account for the capture of a secondary drop, as shown by the light blue
arrow.

Remarkably, shape selection can still be observed in 2D:
the phase diagram in figure 3b reveals a competition between
wrapped and non-wrapped final configurations. This diagram
was obtained by systematically varying the distance x from
the point of impact to the end of the strip, and the impact
velocity U . For the purpose of plotting, the position of impact
x was measured in units of �eg, and U in units of the capillary
velocity (γ/ρR)1/2: the resulting dimensionless velocity is the
square root of the Weber number We = ρU2 R/γ. In our ex-
periments, the Weber number varies 1 from 0.21 to 15, which
is the typical value at which the inkjet technology operates.

Qualitatively, the process of encapsulation requires pass-
ing a gravitational energy barrier with the aid of the initial
kinetic energy. The outcome of a particular experiment re-
flects the efficiency of this energy transfer. Indeed, since both
L and R are larger than �ec, the strip is flexible enough to bend
around the drop and the energy is always minimum in the en-
capsulated state. However, for drops that are too slow, or

impact too far from the edge, the barrier associated with lift-
ing up the strip prevents the system from reaching this global
minimum. When the drop is deposited near the end (small
x), encapsulation involves lifting a short segment of the strip,
making the barrier lower. For small enough values of x, encap-
sulation can even be observed after nearly quasi-static depo-
sition of the drop. For larger values of x, however, the barrier
is higher and some amount of kinetic energy is required. This
explains the existence of a threshold for the velocity U allow-
ing encapsulation, and the increase of this threshold with x.
This qualitative reasoning is consistent with the orientation
of the boundary obtained in the experimental diagram, see
figure 3b. It is now turned into a fully quantitative model.
This requires to first analyze the timescales.

1For the volume of the drop to be well controlled, the drop should not touch the target before
it detaches from the syringe. This sets a minimal release height, corresponding to a lower bound
We = 0.21 in the experiments.
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During the fast initial spreading of the drop, part of the
incident kinetic energy is quickly and irreversibly transferred
into surface energy. Irreversibility is here a consequence of
contact line pinning: due to the roughness of the substrate,
the contact line never recedes. It remains anchored to its
maximal extent in all our experiments. This maximal extent,
denoted ∆, is directly set by the impact parameters. It is
a key mechanical quantity that determines how the capillary
forces are distributed, and how efficiently they bend the film
during the subsequent folding. ∆ was measured in a sepa-
rate series of experiments using the same film (See Supple-
mentary material S1). We found that, in our range of pa-
rameters, spreading is well described by the empirical law
∆(U)−∆0

2R = 0.32We1/2. The parameter ∆0 = ∆(U = 0) rep-
resents the amount of spreading for quasi-static deposition, as
we are in partial wetting conditions. Note that the exponent
1/2 is consistent with a conversion of kinetic energy ∼ ρU2 R3

into surface energy ∼ γ∆2. A simple scaling analysis ex-
plains why the spreading takes place on a much faster time
scale, denoted τc, than the time scale τe for the subsequent
elastic deformation. The capillary timescale τc =

�
ρR3/γ

is independent of the impact velocity [16]. By contrast, the
elastic time scale is given by the natural period of vibra-

tion of the free end of the strip, τe ∼ x2
�

µ
B

�1/2
. The ratio

τc
τe

∼
�

R3

�gc2 �eg

�1/2 �
(x/�eg)

2 ∼ 0.02 is small, when evaluated

with the typical value x = 4 �eg of the 2D experiments.
With the aim to predict encapsulation, we consider a me-

chanical model for the slow folding dynamics of the strip fol-
lowing the initial drop spreading. In this model, the two con-
tact lines are anchored and separated by a prescribed curvi-
linear distance ∆. The value of ∆ captures the initial transfer
of kinetic into surface energy, and the rest of the motion is
driven solely by capillary forces. The dynamics of the strip is
governed by the following potential energy:

U =

� L

0

� B̂
2
|x��(S, t)|2+µ̂ g x(S, t)·ez

�
dS+γ̂ λ(x(·, t), A, x,∆)

[1]
and kinetic energy:

T =
1
2

� L

0

µ̂ |ẋ(S, t)|2 dS. [2]

Here, S is the arc-length along the strip (0 ≤ S ≤ L), and
x(S, t) is the position of the centerline. Deformations take
place in the (x, z) plane, and ez is the unit vector pointing
upwards. Dots denote derivation with respect to time, and
primes with respect to arc-length S. The integrals in the po-
tential and kinetic energies U and T are the classical ones for
an elastic curve of bending modulus B̂ = (Bw) and mass per
unit length µ̂ = (µw), subjected to gravity g: the two first
terms in U are the elastic energy of bending, proportional to
curvature squared, and the potential energy due to gravity.
Coupling with the fluid is achieved by the capillary energy
(γ̂ λ), where γ̂ = (γ w) is the line tension of the fluid-air inter-
face and λ its perimeter, see figure 3c. This interface contacts
the strip at points whose arclength coordinates S1 and S2

are prescribed in terms of two impact parameters, x and ∆:

S1 = L−x−∆/2 and S2 = L−x+∆/2. Owing to the separa-
tion of time scales τc � τe, the drop is treated quasi-statically.
For any configuration of the strip x(S, t), the shape of the drop
is found by minimizing the interfacial length λ under the con-
straint of a prescribed area A. The result is a circular cap
attached to the fixed endpoints S1 and S2, whose radius and
perimeter λ can be computed geometrically in terms of the
current configuration of the strip: λ = λ(x(·, t), A, x,∆) (see
Supplementary material S1).

Our numerical code integrates in time the equations of
motion obtained by applying Lagrangian mechanics to our
Lagrangian L = T − U . In deriving these equations, we con-
sider the inextensibility constraint |x�| = 1 and the presence
of an impenetrable ground x · ez ≥ 0. Fluid incompressibility
is used during the reconstruction of λ(x(·, t), A, x,∆). The
resulting equations of motion are the classical equations for
the dynamics of a 2D Elastica subjected to gravity forces, to
frictionless reaction from the ground in the event of contact,
and to capillary forces (See Supplementary material S1 for de-
tails). The capillary forces tend to make the potential energy
U lower. They do so by bending the strip around the drop,
thereby reducing the interfacial length λ while preserving the
imposed area A.

The numerical phase diagram in figure 3d has been ob-
tained by varying the impact parameters systematically in
a series of simulation runs. The positions of the endpoints
S1 and S2 of the wet region were sampled, restricted to
0 < S1 < S2 < L. In each simulation run, the values of
S1 and S2 are recorded, as well as the outcome of the numer-
ical experiment, encapsulated or non-encapsulated (the exact
criterion for encapsulation is described in the Methods sec-
tion). Each pair of values S1 and S2 is translated into impact
parameters ∆ = |S2−S1| and x = L− S1+S2

2 . For the purpose
of comparison with the experiments, the impact parameter ∆
is then converted into an equivalent Weber number using our
empirical law We1/2∆ := (∆(U)−∆0) /(0.64R) capturing the
fast initial spreading of the drop. As revealed by the phase
diagram in figure 3d, the model successfully explains the selec-
tion of the final shape by the impact parameters. The essen-
tial features of the experimental diagram are reproduced. Any
value of the position of the center of impact x is associated
with a critical value of the Weber number. This corresponds
to a minimal value of the velocity U (or the spreading ∆)
for encapsulation to occur. In addition, this critical value of
the Weber number is an increasing function of x. The nu-
merical model is based on simplifying approximations such as
neglecting the weight and inertia of the drop, as well as three
dimensional effects, capillary waves and depinning of the con-
tact line. Such a depinning occurs on rare occasions, as in the
final frames of figure 4A and 4B. We obtain nevertheless a
close agreement on the boundaries between the encapsulated
and non-encapsulated regions. The simulation parameters are
set directly from their experimental values and there is no ad-
justable parameter.

The model not only predicts the final shape of the strip
but also its detailed time evolution. Comparison of typical ex-
perimental and numerical time sequences is shown in figure 4
for selected values of the impact parameters. An excellent,
frame by frame agreement is obtained.

4 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Figure 4. Comparison of experimental and simulated time sequences for selected impact parameters shown in figure 3. Only a fraction of the strip is shown here. (A)
‘Rigid’ encapsulation observed when x/�eg � 1. (B) ‘Floppy’ encapsulation: for larger values of x/�eg, the free end of the film folds so as to mitigate the penalization due
to gravity. (C) When the drop is deposited too far from the end of the strip, capillary forces cannot overcome the weight of the strip and the drop remains unencapsulated.
See also supplementary movie S3.

The sets of impact parameters values were chosen so as
to illustrate the main regimes of encapsulation. The model
perfectly reproduces both the ‘rigid’ mode of encapsulation in
sequence A, where the free end of the strip folds about the
drop with little deformation, the ‘floppy’ mode in sequence
B reminiscent of the Fosbury-flop, where bending of the strip
helps reducing the height of the gravitational energy barrier,
and the absence of encapsulation in sequence C, when impact
occurs further from the endpoint of the strip than in A and
with a lower velocity U (and spreading length ∆) than in B.
To compensate for the slightly different shape of the bound-
ary in the experimental and numerical phase diagrams, the
points A, B and C have been moved by a small amount in

the numerical diagram, i. e. we have assigned them the same
position relative to the boundary as in the experimental dia-
gram, rather than the same absolute position. Overall, all the
details of the dynamic sequence leading to encapsulation are
captured with remarkable accuracy.

For a small subset of the experiments, confined to a lim-
ited region of the experimental phase diagram and labelled
by stars in figure 3b, encapsulation takes a special route. In
this region, the final state is not always reproducible even
for fixed impact parameters. In addition, encapsulation can
be observed for anomalously large values of x: the two stars
to the right of the point D in figure 3b clearly stand out to
the right of the boundary. This surprising behaviour can be
explained by looking at the time sequence in figure 5a.

Footline Author PNAS Issue Date Volume Issue Number 5
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Figure 5. Encapsulation aided by a topology change of the drop. (a) In the experiments a secondary drop appears transiently by pinch-off and coalescence whenWe
1
2 ≈ 2.8.

This detachment leads to encapsulation in a region where it would otherwise not be possible: the impact parameters for this experiment are denoted by the star labelled D,
located to the right of the boundary in the phase diagram of figure 3b. (b) This transient topology change is accounted for by extending the footprint ∆ of the drop in
the middle of the simulation (inset D�), by an amount measured from the experimental frames. As a result, simulation correctly predicts encapsulation, and matches the
experimental movie frame by frame. (c) When this footprint ∆ is left unchanged, simulation fails to predict encapsulation.

Shortly after the initial spreading, a vertical jet is formed
and a secondary drop detaches. Under the action of gravity,
it accelerates downwards, catches up with the falling capillary
bundle, and coalesces. In some experiments, such as that la-
belled D in the figure, the bouncing drop lands on the edge
of the main drop and coalesces, thereby increasing the wet
length ∆. This induces a redistribution of the capillary forces
that substantially modifies the subsequent folding dynamics.
Since the ejection of a secondary drop is ruled by the We-
ber number, this view is consistent with the observation that
anomalous encapsulation events are all observed when the We-
ber number is close to a particular value, We1/2 ≈ 2.8. When
the simulation is run as earlier, ignoring the secondary drop,
encapsulation is not correctly predicted, as shown in figure 5c.
The role of the secondary drop is captured by a simple exten-
sion of the model. From the experimental movies, we measure
the time of ejection of the secondary drop and the position S�

2

of the contact line after coalescence. This yields virtual im-
pact parameters, labelled D� in figure 3d, which are indeed
well inside the region of encapsulation. We run again the sim-
ulation, now updating the position S2 of the contact line to

S�
2 at the time of coalescence. As shown in figure 5b, the key

role of the secondary drop on the final pattern is accurately
captured. Encapsulation is correctly predicted and compari-
son with the experiments reveals an excellent, frame by frame
agreement.

Our system demonstrates one of the interesting and
largely unexplored phenomena arising out of the combina-
tion of capillarity with large, dynamic deformations of fluid
interfaces and flexible bodies. At small scales, viscosity and
capillarity are often considered as dominant, and inertia neg-
ligible. The impact of a drop is an interesting exception to
this rule: kinetic energy, when initially stored in the form of
a rigid-body mode of translation, cannot be dissipated by vis-
cosity. This energy ends up in selecting the final shape among
competing equilibria. We studied in detail a 2D setting, where
well-controlled experiments were found in quantitative agree-
ment with a tractable model. In this 2D setting, multistability
arises from gravity. The dynamical shape selection uncovered
here works also at smaller scales, where gravity becomes unim-
portant. Indeed, there are other sources of multistability, such
as nonlinear elasticity of thin films or the follower character of
capillary forces. As a matter of fact, numerical experiments

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author



confirmed the persistence of shape selection in the absence of
gravity (see Supplementary Material S1 and supplementary
video S4). Robustness of the selection mechanism opens up
the perspective of scaling down the experiment to the size of
an inkjet drop.

Materials and Methods
The thin elastic sheets were made of polydimethylsyloxane (PDMS - RTV) that was
spin coated on a glass microscope slide at 1500 RPM, and cured at 70

◦
C for one

hour. The resulting thickness was 55 µm. The thin polymer films were peeled off
from the glass using a surgical blade, and further cut out to the desired shape. The
pattern was then deposited onto a rigid copper substrate warranting a high restitution
coefficient upon impact. To make the copper super-hydrophobic we used electroless
galvanization [17]: it was first coated with a textured metallic layer (AgNO3) and
then covered with a low surface energy self-assembled monolayer (1H,1H,2H,2H-
perfluorodecanethiol - HDFT). The polymer patterns were powdered with talc to
prevent self-adhesion; talc was found to enhance contact line pinning. All sequences
were recorded using a high-speed camera Photron SA-5 at 5000 fps.

The numerical simulations are based on the ‘Discrete Elastic Rods’ model of
Bergou et al. [18], which has been validated against analytical reference solutions
in the original paper. Here, we used it in a 2D geometry where twist is absent. We
used the codebase developed by M. Bergou and E. Grinspun at Columbia University,

which has kindly been made available to us. Its robust and efficient treatment of the
inextensibility constraint allows for fast simulations, taking typically less than 30 s
even at the highest resolution. Details on the implementation of our model are pro-
vided in Supplementary material S1. In the simulations, we used the experimental

values of µ̂ = µw, B̂ = Bw and γ̂ = γ w for the meniscus force, and we set
A = V/�eg . This choice of A reflects the observation that the rounded shape of
the drop makes it wider than w; as a result, its width is clearly closer to �eg than to
w. These experimental values were made dimensionless, as we used units such that

gravity g, lineic mass µ̂ and bending modulus B̂ all have the value 1. In such units,
the line tension γ̂∗ = 40. and the area of the 2D drop is A∗ = 0.36.

The criterion for encapsulation used both in experiments and numerical simula-
tions was to test whether the endpoint of the free edge S = L had been moved to
the left of the point at the center of impact S = L−x: encapsulation corresponds
to y(L, t = ∞) < y(L− x, t = ∞).
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Experimental law for the fast initial spreading

We conducted a series of experiments with the aim to charac-
terize the spreading ∆ of an impacting drop on the same thin
and narrow polymer strip as used in our ‘2D’ experiments.
Here, both the drop radius R and the impacting velocity U

are varied. The results are reported in figure 1. The relative
spreading (∆−∆0)/2R is plotted as a function of the Weber
number We = ρU

2
R/γ. Here, ∆0 represents the spreading in

a quasi-static setting, when the drop is gently deposited on
the flexible strip. The value of ∆0 is extrapolated from the
dataset and not measured directly; we find ∆0 = 2.04, 2.20,
1.96, 3.68 mm for R = 1.2, 1.5, 1.6, 1.85 mm respectively. The
data for the different radii R all collapse on a single curve, in-
dicating that the Weber number We is the relevant parameter
for the spreading. A simple power law fits the data:

∆−∆0

2R
= 0.32We1/2, [1]

as shown in the figure.

�

�
�

�

�

�

�

�

�
� �

��

�

�
�
� ��

�
�

�

�

�

�
� �

� ��
�

1 2 5 10 20 50 100

0.2

0.5

1.0

2.0

5.0

10.0

We

�
�
�
0

2
R

Figure 1. Spreading of a drop on a polymer strip. Different drop radii were used

: R = 1.2 mm (�), 1.5 mm (•), 1.6 mm (�) and 1.85 mm (�). The dimension-

less spreading length (∆−∆0)/2R is plotted as a function of the Weber number

We = ρU2R/γ. The solid line is given by equation (1).

This experimental law is valid in our particular range of
parameters. Its practical use is to allow confrontation of the
experiments, where the velocity U is available, with the sim-
ulations, where the spreading length ∆ is prescribed.

Calculation of fluid forces in the numerical code

Equations for dynamic, 2D Elastica. Let S be the arclength,
t the time, and x(S, t) be the unknown position of centerline,
see figure 2. The inextensibility condition writes |x�(S, t)| = 1.
Let then t(S, t) and q(S, t) be the unit tangent and normal to
the centerline, respectively:

t(S, t) = x�(S, t), q(S, t) = (−ey)× t(S, t). [2a]

Note that with these sign conventions, the local basis (t,q) is
orthonormal and direct in the plane (x, z).

Figure 2. Geometry of a 2D Elastica

The signed curvature is defined by

κ(S, t) = x��(S, t) · q(S, t). [2b]

We consider a linearly elastic, naturally straight strip with
bending modulus B̂. Its constitutive relation expresses pro-
portionality between the curvature strain κ and the bending
moment: m(S, t) = B̂ κ(S, t) (−ey). By the Kirchhoff equa-
tion for the balance of moment, m� + t× n = 0, the internal
moment m has to be balanced by an internal force n of the
form:

n(S, t) = T (S, t) t(S, t)− B̂ κ
�(S, t)q(S, t), [2c]

where the tension T is an unknown Lagrange multiplier associ-
ated with the inextensibility condition. The second Kirchhoff
equation expresses the fundamental law of dynamics:

µ̂ ẍ(S, t) = n�(S, t) + p(S, t). [2d]

Here, p(S, t) is the density of applied force, per unit length
of the rod. Inserting equations (2a–2c) into equation (2d), we
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obtain a nonlinear partial differential equation for the main
unknown x(S, t) which is fourth order in space and second
order in time. This is the classical equation for a dynamic
Elastica in 2D. This equation of motion can be obtained by
variational principles from the Lagrangian L = T − U given
in main text, see for instance Ref. [1].

Quasi-static reconstruction of the drop.At every time, we
determine the shape of the drop given the profile x(S) of the
centerline — the time variable is omitted in the present Sec-
tion. The shape of the drop is determined by the following
requirements, see figure 3:

Figure 3. Quasi-static reconstruction of the fluid domain.

(i) the fluid-air interface is anchored to two points in space
x1 = x(S1) and x2 = x(S2) that are prescribed, (ii) the length
λ of this interface has to be minimal to make the capillary en-
ergy (γ̂ λ) minimum, (iii) the area of the fluid, i. e. of the
region enclosed by the fluid-air interface and by the wet part
of the rod x(S) for S1 ≤ S ≤ S2, is constrained to a prescribed
value A. The mass of fluid is neglected. This approximation
suppresses capillary waves, and is consistent with the fact that
the simulation resolves the elastic timescale τe, which is much
larger than the capillary one, τc, see main text.

This constrained variational problem characterizes the
equilibrium shape of a wetting fluid without gravity. Its so-
lution is classical: the fluid-air interface is an arc of circle
at equilibrium. The properties of this arc are determined as
follows. First, we compute the signed area A0 of the region
enclosed between between the wet part of the rod, traced out
by x(S) for S1 ≤ S ≤ S2, and the segment joining x1 and x2,
with the sign conventions shown in figure 3. The area A1 of
the circular cap shown in green in the figure, enclosed between
the fluid-air interface and the segment [x1,x2], is A1 = A−A0.
The angle ϕ of the circular cap is then calculated by solving
the following geometric relation:

A1

|x1x2|2
=

ϕ− sinϕ

8 sin2 ϕ
2

.

The radius r and the perimeter λ of the circular cap are then
found by

r =
|x1x2|
2 sin ϕ

2

, λ = ϕ r.

Finally, the angles θ1 and θ2 of the fluid-air interface with
respect to the local frame (t,q) are given by

θ1 =
ϕ

2
+ ∠(t1,x2 − x1), θ2 =

ϕ

2
+ ∠(x1 − x2,−t2),

where ∠(a,b) denotes the signed measure of the angle made
by the vectors a and b, and t1 = x�(S1) = t(S1) and
t2 = x�(S2) = t(S2) denote the unit tangents at the two

points of contact of the interface with the rod. Note that the
angles θ1 and θ2 are different from the equilibrium value set
by the Young-Dupré relation since the contact line is pinned.

In the simulation we do not implement any mechanism
preventing the fluid-air interface from crossing the rod. A
spurious crossing is visible in the inset labelled D� in fig. 5b of
main text. Overlooking the collisions of the fluid-air interface
with the rod is justified a posteriori by the fact that we ob-
served such collisions in only one instance, which is precisely
the simulation labelled D − D�. Even then the crossing took
place during a short time interval, just after the anchor point
S2 was moved to the right. In addition this crossing takes
place over a region much smaller than the size of the drop. As
a result, its impact on the simulation is very limited.

Expression of forces.We consider three types of forces, with
total lineic density p(S, t):

p(S, t) = pg(S, t) + pc(S, t) + pγ(S, t), [3]

where pg denotes the weight of the Elastica, pc the reaction
of the support, and pγ the capillary forces.

The weight is given in terms of the mass per unit length
µ̂:

pg(S, t) = −µ̂ ez. [4]

In the absence of friction on the ground, the contact force
reads:

pc(S, t) = pc(S, t) ez [5]

where pc ≥ 0 is the unknown contact pressure with the
ground. This force is associated with the unilateral constraint
x(S) · ez ≥ 0. Note that pc = 0 when there is no contact, i. e.
x(S) · ez > 0. In the implementation, we avoid calculating
the contact pressure pc as collision response is treated using
an impulse-based model.

The capillary force is made up of two point-like forces,
acting at the points of contact S1 and S2 and represented by
Dirac distributions, and a distributed force arising from the
capillary pressure inside the drop:

pγ(S, t) = f1 δ(S − S1) + f2 δ(S − S2)

+ fp(S)H(S − S1)H(S2 − S), [6]

where the Heaviside function H is used here to restrict the
support of the last term to the wet region, S1 < S < S2.
The point-like forces f1 and f2 are directed along the fluid-air
interface, and represent line tension:

f1 = γ̂ (t(S1) cos θ1 + q(S1) sin θ1), [7a]

f2 = γ̂ (−t(S2) cos θ2 + q(S2) sin θ2). [7b]

The distributed force fp is the pressure force arising from cap-
illary pressure

fp(S) = − γ̂

r
q(S). [8]

These capillary forces can be derived from the capillary energy
(γ̂ λ) by variational principles.

Selection of final shape in the absence of gravity

Here we show that the final pattern can be selected by the im-
pact velocity even in the absence of gravity. Gravity was con-
sidered in the main text as it allows to set up well-controlled
experiments showing quantitative agreement with the numer-
ics.

Figure 5 shows time sequences for two numerical exper-
iments with the same parameters, except for the spreading
∆. Figure (5a) makes use of a smaller spreading length
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Figure 4. Forces applied on the elastic filament: capillary forces pγ , weight pg , and contact forces from the support pc.
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Figure 5. Time sequences illustrating selection in the absence of gravity: by increasing the spreading length without modifying the other parameters, the final state goes

from (a) unencapsulated to (b) encapsulated. Parameters common to both simulations are rescaled drop area A/�ec2 = 1.5 and rod length L/�ec = 4.6. A small damping

is enforced using a viscous drag coefficient per unit length db/ds = 1.04 (µ̂ B̂)/�2ec. Different drop impacts are simulated using (a) ∆/�ec = 2.5 for a slower impact

and (b) ∆/�ec = 4 for a slower impact. Overall duration of the time sequences is t = 8.4 (µ̂/B̂)1/2. See also supplementary movie S4.

∆ = 2.5 �ec, corresponding to a slower impact velocity, than
in figure (5b), for which ∆ = 4 �ec. Encapsulation is observed
with the larger spreading length only, leading to the same find-
ings as in the experiments of Figure 2 in main text (dynamic
impact on a flower-shaped target without long arms).

The possibility of a transition from unencapsulated to en-
capsulated final states can be understood by looking at the
branches of equilibria for fixed rod length L, drop area A

and elasto-capillary length �ec. These branches are plotted
in figure 6 for the same parameters as used in the time se-
quences of figure 5. A bistability is observed for some values
of spreading length ∆, as in reference [2]. For sufficiently large
spreading width ∆, the kinetic energy of the impacting drop
is converted into capillary energy (captured by the numerical
parameter ∆) and back into kinetic energy, allowing the bun-

dle to jump onto the encapsulated branch from an initially
flat configuration.
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Figure 6. Equilibrium configurations in the absence of gravity, for A/�2ec = 1.5
and L/�ec = 4.6 (same parameters as in figure 5). The x axis is the rescaled length

∆ of the fluid-solid interface, and the y axis measures encapsulation. For some values

of the parameters, multiple equilibrium configurations are in competition.
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