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In a wide range of conditions, ocean waves break. This can be seen as the manifestation
of a singularity in the dynamics of the fluid surface, moving under the effect of the fluid
motion underneath. We show that, at the onset of breaking, the wave crest expands in
the spanwise direction as the square root of time. This is first derived from a theoretical
analysis and then compared with experimental findings. The agreement is excellent.
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1. Introduction

Wave breaking in shallow water may be seen as the expression in the real world
of the occurrence of a singularity in the solution of the equations of motion for a
free surface. Somewhat related ideas have been presented by Whitham (1974),
without, however, making predictions for the widening of the rolling crest. The
wave breaking is a singularity because this set of equations is derived under the
assumption that the surface is close to horizontal and because its solution after a
finite time has a vertical tangent plane. This problem is studied first in a model,
assumed to be generic for this type of singularity: the so-called Burger’s equation.
This yields generic scaling laws for various quantities near the singular time.
Usually, the analysis of this model is limited to dependence with respect to one
space coordinate and to time. This is not sufficient for the breaking of real waves
involving deformations of a two-dimensional surface and therefore needing two
space coordinates. Just after breaking this surface includes a closed non-planar
curve where its tangent plane is vertical, this curve growing from a point at the
onset of singularity. In a hypothetical two-dimensional world, the study of the
one-dimensional Burger’s equation would apply to the typical situation for wave
breaking and the curve just mentioned would reduce itself to a pair of points.
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Y. Pomeau et al.2
In our three-dimensional world, the wave breaking occurs generically at a point
on a surface and spreads later on in the spanwise direction. This paper gives the
time dependence of this spreading. Real waves are described by highly nonlinear
equations without hope of any explicit general solution. Therefore we rely on an
analysis of the breakdown of smooth solutions of model equations with two space
coordinates. In this model the width of the singular region increases generically
like the square root of the time difference between the actual time and the instant
where the solution becomes singular first. Then we show theoretically that the
same breaking process occurs in ‘real’ water waves, in the approximation of long
wave, relatively small amplitude and negligible dispersion. In the last part, we
present experimental observations of the spreading of the crest of breaking waves
in a laboratory set-up allowing accurate measurements in shallow water, showing
a remarkable agreement with the theoretically predicted exponent.
2. From one-dimensional to two-dimensional wave breaking: a model

Below we first recall standard results on the so-called one-dimensional (1D)
inviscid Burger’s equation and extend them to two space dimensions. The main
result of the two-dimensional analysis is that the width of the singular region
grows like the square root of time, after the first singularity.

In 1808 Poisson explained how to solve the Cauchy problem for the equation
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vx
Z 0: ð2:1Þ

Thanks to his solution it is possible to show the occurrence of singularities
after a finite time for a wide class of smooth initial data. The equation (2.1) has
the implicit solution

uðx; tÞZ u0ðxKutÞ; ð2:2Þ
where u0(x) is the initial condition, taken at tZ0. Note that (i) in the following,
we change the origin of time so that the first singularity in the solution of
Burger’s equation takes place at tZ0 (the initial condition is then somewhere at
t!0) and that (ii) we do not specify what this initial condition is (we only need it
to be bell-shaped and smooth).

Another way of writing this solution is to consider the argument of u0, on the
r.h.s. of equation (2.2), as a function of u(x, t)

f ðuðx;tÞÞZ xKut; ð2:3Þ
where f($) is the inverse function of u0($). It is a classical result that for any bell-shaped
and smooth initial data u0, the first singularity of u(x, t) appears at the inflection point
of the function u0 on the right of the maximum when u0 is positive (figure 1).

Indeed, the singularity happens when the solution u(x, t), as given by equation
(2.3), becomes multi-valued, that is whenever vx/vuZ0, the derivative is taken
at constant t. This yields

tC
df

du
Z 0: ð2:4Þ
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Figure 1. (a) Sketch of the typical time evolution of a one-dimensional breaking wave, starting for
instance from a Gaussian profile. The star indicates the inflection point where the singularity first
appears. (b) Resolution at three different times of the universal equation for the ‘wave breaking’
(2.5), valid at first order for any bell-shaped and smooth initial condition, considering that the first
singularity takes place at tZ0 and xZ0 with uZ0 (after changing the origins of time and space and
after the Galilean transform).

3Spreading of the crest of breaking wave
For a given f(u), the smallest time when equation (2.4) has a solution is when
this solution is stationary with respect to t, that is, when dtZ0. Equation (2.4)
then yields 0ZdtZKduðd2f =du2Þ or simply d2f =du2Z0. Let us now look at the
Taylor expansion of f(u) around this point. Constant and linear terms can be
eliminated by changing the origins of time and space and by the Galilean
transform (i.e. the first singularity takes place at tZ0 and xZ0 with uZ0).
Therefore, the Taylor expansion of f(u) reads f ðuÞZKu3Cau4C/, the coefficient
of u3 being negative to have a singularity appearing in forward times. Once put
into equation (2.3), this gives at lower order the universal equation for the ‘wave
breaking’, valid for any bell-shaped and smooth initial condition at t0!0

0Z u3CxKut: ð2:5Þ
For short times (i.e. around the breaking time tZ0), u scales like t1/2 and x like

t3/2, this making of the same order, t3/2, all terms on the r.h.s. of equation (2.5).
Note that the result u(x) of (2.5) is single valued for t negative and triple valued for

t positive (figure 1). If a small dissipative term is added to the equation (2.1) tomake
it resemble the Navier–Stokes equation, one obtains the so-called Burger’s equation
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Z e

v2u

vx2
; ð2:6Þ

where e is a small and positive coefficient. The addition of this dissipative term is a
way of regularizing the solutions of (2.1), the multi-valued results being replaced by
a jump around xZ0, which represents a shock for this model.
Proc. R. Soc. A
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The novelty of our study comes from the extension of this standard approach
to the problem of formation of shocks in solutions of nonlinear hyperbolic
equations with more than one space variable. Consider for instance the case of
two space variables, x and y, and let u(x, y, t) and v(x, y, t) be the two Cartesian
components of the velocity field. The generalization of the nonlinear equation
(2.1) reads

vu

vt
Cu

vu

vx
Cv

vu

vy
Z 0 ð2:7Þ
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Z 0: ð2:8Þ

This represents the ‘fluid mechanics’ equations for a gas without pressure, the
origin of which can be traced back to the Principia, scholium, at the end of
proposition IV, problem II, book 2, where Newton (1687) derives the quadratic
law of drag for bodies moving in a fluid ‘void of tenacity’ in the words of the
English translation by Motte (1729) (the newer translation by Cohen &
Whitman (1999) translates the original Latin words into ‘lacking in rigidity’).
This set of equations has been used by Zel’dovich (1970) to explain the formation
of large-scale structures in the Universe, assuming a potential flow. We now
suggest that it provides a model for the occurrence of singularities for time-
dependent functions of two space coordinates (x, y).

Similarly to the one-dimensional case, equations (2.7) and (2.8) admit a formal
solution

xKtuðx; y; tÞZFðu; vÞ ð2:9Þ
and

yKtvðx; y; tÞZGðu; vÞ; ð2:10Þ

where F(u, v) andG(u, v) are defined by the initial conditions. A crucial remark for
the following is that the l.h.s. of the equations (2.9) and (2.10) are invariant under
general transformations of the linear group. Let M be the general two-by-two
matrix of this group, with non-zero determinant. It is obvious that ð~u; ~vÞZ
Mðu; vÞ and ð~x; ~yÞZMðx; yÞ are solutions of equations of the same form as the
l.h.s. of equations (2.9) and (2.10). This holds true with the samematrixM acting
on (u, v) and (x, y). Of course the same general linear map will change in general
the functions F(u, v) andG(u, v) in a rather complicated way, but because the map
is linear, it will not change the degree of a polynomial in u and v. Thanks to this
remark we shall be able to show, without calculation, that singularities yielding
discontinuities of derivatives with respect to x may spread in any direction, the
analysis being made by assuming first that the singularity spreads normal to x.

For smooth initial data, F and G are such that the initial mapping from (u, v)
to (x, y) is one to one. The solutions of equations (2.7) and (2.8) become singular
whenever the time-dependent Jacobian J(t) of the mapping from (u, v) to (x, y)
becomes singular at a certain time t. This Jacobian reads

JðtÞZ vG

vv
C t

� �
vF

vu
C t

� �
K

vG

vu

vF

vv
: ð2:11Þ
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5Spreading of the crest of breaking wave
Let us assume that the singularity occurs first at tZ0 and at xZyZ0 with
uZvZ0 too. As in the one-dimensional case, this last restriction is not as
important as one could believe first: the original equations are Galilean invariant,
so that one can always bring to uZvZ0 the velocity field at some point of time
and space. The condition equivalent to the cancellation of the second derivative
of f(u) at uZ0 here is the property that, near tZuZvZ0, the first non-vanishing
terms in the Taylor expansion of the Jacobian J(t) read

JðtÞZ atCbu2 Ccv2C2duvC/; ð2:12Þ
where a, b, c and d are constants derived from initial conditions. To give the
quadratic term ðbu2Ccv2C2duvÞ in the Jacobian, F(u, v) and G(u, v) have to be
expanded in Taylor series to third order, which depends on two sets of 10
coefficients. But the algebra is greatly simplified by limiting oneself to the
leading-order terms near the singularity. Indeed, at tZ0, the Jacobian matrix
has a zero eigenvalue that can be associated to an eigenvector pointing in the
x direction. Therefore the coefficients of the Taylor expansion of F(u, v) and
G(u, v) are such that vF/vuZ0, vF/vvZ0 and vG/vuZ0 at uZvZ0. This yields
that, near the singularity, the leading-order term in F(u, v) and G(u, v) should be

Fðu; vÞZ b0v2Cd 0u3Cg 0uv2 C f 0u2v and Gðu; vÞZ c 0v; ð2:13Þ
where the various coefficients can be easily related to b, c, and d through equation
(2.12). Then, at leading order, equations (2.9) and (2.10) become

xKut Z b0v2Cd 0u3 Cg 0uv2C f 0u2v; ð2:14Þ

y Z c 0v; ð2:15Þ
the term tv in (2.10) being negligible compared with c 0v. Further simplifica-
tions of equation (2.14) are now possible. First, one can note that the term
b0v2Zðb0=c 02Þy2 changes the support of the singularity from a straight line to a
bent line without playing any other significant role: near the singularity one may
always approximate the line of singularity by a straight line. Second, one can also
neglect the term f 0u2vZð f 0=c 0Þu2y, since it can be absorbed into a change of u
into uCey, e being a constant. After rescaling, equation (2.14) finally leads to a
universal equation for the wave breaking in two space dimensions, valid for any
bell-shaped and smooth initial conditions

0Z u3 CxKuðtKy2Þ: ð2:16Þ
Note that all terms in equation (2.16) are of order jt j3/2 near the singularity,

with ywjt j1/2, uwjt j1/2 and xwjt j3/2. This shows our main point, namely that the
crest of the breaking wave (if this theory applies to the real phenomenon of wave
breaking) spreads like

ffiffi
t

p
after the inception of the singularity, something that

we will now verify in a real fluid mechanics configuration.
Let us end this section with three remarks.

(i) Note that x and y do not have to be coordinates along orthogonal axis,
because the Jacobian matrix is reduced to its diagonal form by a general
change of coordinates which is not necessarily a rotation, the Jacobian
being not real symmetric in general.
Proc. R. Soc. A



Y. Pomeau et al.6
(ii) Supposing that u(x, y, t) behaves in the same way as the vertical position
z(x, y, t)Zu(x, y, t) on the surface of a breaking wave (which is the case in
shallow water, see §3), one finds the loci of points of vertical slope on the
surface (the contour of the surface) by deriving from equation (2.16) the
coordinates of the points where dzZ0. The projection on the horizontal
plane of this curve has Cartesian equation

27x2 Z 4ðtKy2Þ3;

although the z coordinate is such that z2ZðtKy2Þ=3, the determination
zZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtKy2Þ=3

p
being taken when x is positive and zZK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtKy2Þ=3

p
with

x negative, all this because xZ2u=3ðtKy2Þ and tOy2.
(iii) In higher space dimensions, practically in three dimensions, the

reasoning above still works, at least in its general lines. The first and
most obvious situation is the onset of formation of a shock wave in a
compressible gas (this shock wave could be generated by pushing
impulsively a parabolic metal sheet in a gas, leading to the formation of
a shock wave near the focus), supposing none exists before the critical
time tZ0. A simple extension of the arguments presented shows that
the field u(x, y, z, t), solution of the pressure-less Bernoulli equations,
becomes singular at one point in the three-dimensional geometrical space
and at a definite time, taken as zero. Locally this field is given by a root
of the equation

0Z u3CxKuðtKy2Kz2Þ: ð2:17Þ

In this equation y and z are coordinates in a system of oblique axis
depending on the initial conditions. In the physical three-dimensional
space with the regularization by diffusion, the singularity is supported by
an ellipse expanding homothetically with a size increasing as

ffiffi
t

p
. This

would be the case at the onset of formation of a generic shock wave in a
compressible gas. But there is more than that in the above analysis.
One can also study the case where the coefficient of u has signs different
from the ones in equation (2.17). Consider what happens if this

coefficient is (tKy2Cz2) instead of (tKy2Kz2). For any value of t the

equation for u, namely 0Zu3CxKuðtKy 2Cz2Þ, has three solutions, at
least in certain domains of the (x, y, z) space, domains that collapse to a
surface under the Maxwell construction, a surface making the shock
wave. It means that there is a shock wave supported by a surface before
and after tZ0. The edge of the shock wave surface is where and when
the coefficient of u is zero, which is along the hyperbola tZy2Kz2. At
tZ0 this hyperbola degenerates into its two straight asymptotes, yZGz.
On a larger scale, there are one or two shock surfaces that may either
merge to a single point or break in two pieces, depending on which side
of the hyperbolae lies the shock. The local hyperbolae are the edges of
the shock surface, the jump across the shock tending to zero as one
moves along the shock surface towards this edge. A hard to read paper
by Arnold et al. (1991) deals with a related topic, the bifurcations of a
shock surface.
Proc. R. Soc. A



7Spreading of the crest of breaking wave
3. Wave breaking in shallow water

The analysis presented before does not apply directly to the case of real water
waves, because they are not described mathematically by the equations for a
fluid void of tenacity, or which is pressure-less. However it can be shown, as done
below, that, in a well-defined limit, this theory is relevant for the breaking of
waves in shallow water. This is done by estimating the typical quantities
describing the wave breaking in a way inspired by the pressure-less case and by
showing that, in a reference frame moving at the speed of linear waves, one
recovers the equations of the pressure-less fluid near the singularity.

The dynamics of long waves in a layer of inviscid fluid of depth much smaller
than the typical range of variation of the various quantities involved (see §4 for a
discussion of the order of magnitudes involved) can be described by the following
set of equations for the basic quantities corresponding to the fluid depth h(x, y, t)
and to the two Cartesian components of the horizontal fluid velocity, u(x, y, t)
and v(x, y, t): the condition of mass conservation reads

vh

vt
C

vðuhÞ
vx

C
vðvhÞ
vy

Z 0; ð3:1Þ

the condition of momentum conservation in the x -direction reads
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Cu

vu

vx
Cv
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vy
Cg
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vx
Z 0 ð3:2Þ

and in the y-direction
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vv
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Cv

vv

vy
Cg
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vy
Z 0: ð3:3Þ

In equations (3.2) and (3.3), g is the positive acceleration of gravity. This set of
equations admits non-trivial simple wave solutions whenever no function
depends on y (for instance). Non-trivial solutions including both a dependence
on x, y and t do not seem to exist. Nevertheless, it is possible to analyse the
occurrence of singularities by solving this set in a convenient limit.

Let us do it first for solutions depending on x only. We assume that
hZh0C ~h ðx; tÞ, where h0 is the constant (and positive) depth, much larger than
the small perturbation ~h ðx; tÞ. This allows to neglect terms of order ~hðx; tÞu with
respect to h0u(x, t). The new set of equations reads

v~h

vt
Cu

v~h

vx
Ch0

vu

vx
Z 0 ð3:4Þ

and

vu

vt
Cu

vu

vx
Cg

v~h

vx
Z 0: ð3:5Þ

Note that, although ~h has been neglected with respect to h0 in front of vu/vx,
uðv~h=vxÞ has been kept, because it is a priori not smaller than any other term
written explicitly in equation (3.4) (in particular, at the singularity, we expect
the x derivative to go to infinity).

Take now h0 as unit for ~h , introduce CB such that C 2
BZgh0 (the subscript B is

to recall that this velocity was derived first by Bernoulli), take CB as unit for u
and choose new units for t and x such that their ratio is 1 when their ratio in
Proc. R. Soc. A
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physical units is CB, the equations for ~h and u become

v~h

vt
Cu

v~h

vx
C

vu

vx
Z 0 ð3:6Þ

and
vu

vt
Cu

vu

vx
C

v~h

vx
Z 0: ð3:7Þ

Those equations become identical if uZ ~h . This corresponds to the so-called
simple wave. Let uZ ~hZw, the two equations (3.6) and (3.7) become the single one

vw

vt
Cw

vw

vx
C

vw

vx
Z 0: ð3:8Þ

This is brought back to the familiar (so-called) inviscid Burger’s equation (2.1) by
the change of unknown function from w to (wC1). It shows that the singularity is
the same as the one found before, of course not a new result at all, owing to the
possibility of solving the full set (3.1)–(3.3) by Riemann’s method with vZ0 and no
dependence on y.

Let us now look at the dimensionless equations for the nonlinear wave
propagation in shallow water in two space dimensions, using the same scaling.
The mass conservation yields

v~h

vt
C

vu

vx
C

vv

vy

� �
Cu

v~h

vx
Cv

v~h

vy
Z 0: ð3:9Þ

The conditions of momentum conservation along x and y read
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Z 0 ð3:10Þ
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vy
Z 0: ð3:11Þ

Let us assume first that the scaling laws for y, x, t and u are the same as in the
generic singularity of the two-dimensional Burger’s equation, that is ywjtj1/2,
xwjtj3/2 and uwvwjtj1/2. Then in equation (3.9), ðvu=vxÞwjtjK1 is dominant
compared with ðvv=vyÞwjtj0. Therefore at leading order, equation (3.9) becomes

v~h

vt
C
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v~h

vx
Cv

v~h

vy
Z 0:

Similarly to the one-dimensional case, we can then look for a simple wave
solution, i.e. ~hZu. Taking wZuC1 as new unknown function, one finds that
(3.9) and (3.10) reduce to a single equation for w
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vx
Cv

vw

vy
Z 0:

Let us now write equation (3.11) with this new function w
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Z 0:
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9Spreading of the crest of breaking wave
The first three terms correspond to the two-dimensional Burger’s equation,
whereas the last two terms correspond to the vertical vorticity. Let us look at
their contribution, assuming that the scaling from §2 holds: vv/vx is then zero,
whereas vw/vy induces a negligible correction on v of order t. This means that
starting from an irrotational initial condition (a smooth wave propagating in the
x direction with no y dependence), no vorticity generation is to be expected at the
first order relevant to our theory. Note, however, that this does not preclude
vorticity generation at higher order at the edge of the breaking zone, as shown for
instance by Peregrine (1999) at the edge of bores. This very interesting question
is beyond the scope of the present paper, but will be the focus of future
theoretical and experimental studies.

Neglecting the vorticity, the system to be solved is the same as the one solved for
the pressure-less fluid. This proves our point, namely that at leading order the singular
solution is for u($) (and so for ~h ) the same as for the pressure-less case, up to the
addition of the constant speed necessary to get rid of the Galilean change of frame of
reference, the fluid velocity v being just proportional to y. In particular, the widening
of the wave-breaking domain in the y direction scales like the square root of time.

The calculation above suggests that this behaviour is ‘universal’ for nonlinear
non-dispersive waves. Other kind of waves are known to break, such as the ocean
waves on deep water (with, practically, infinite depth) or the gravity waves in
the atmosphere. Does their spreading in the y direction follow the same square
root law? The answer to this question depends in particular on how precise can
be set the instant of time of the breaking process.
4. Wave breaking in the one-dimensional case:
nonlinearity versus dispersion

This section is to look more closely at the wave breaking in one dimension. More
specifically, we make the connection between the solution of the equations
(3.1)–(3.3) and the real wave breaking. The need to do this arises from the simple
observation that the long-wave equations are clearly invalid at the time of the
break-up and presumably some time before because the slope vh/vx then
diverges, although the equations are derived under the assumption of a surface
with a small slope. This situation is rather common in many problems where the
onset of singularity is just a witness that somewhere and sometime another
approximation (or another method) has to be used to solve the problem at hand,
an approximation different from the one that leads to the singular behaviour.

It is known that dispersion effects occurring at the next order in the shallow water
approximation (the small parameter being the fluid depth and the leading order the
equations of the previous section) yield the Korteweg–de Vries (KdV) equation in
the co-moving frame. The KdV equation has no finite time singularity with smooth
initial data and yields instead solitons where the nonlinearity and the dispersion
balance each other to avoid singularities. It is worth pointing out that this discussion
is a very natural extension of the one made long ago by Stokes to define precisely the
range of validity of the linearized Boussinesq theory. It is at least in qualitative
agreement with the observation reported in §5 that waves break or not depending on
their amplitude: at small amplitude dispersion dominates and there is no breaking,
although at higher amplitudes nonlinear effects dominate and waves break.
Proc. R. Soc. A
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The KdV equation in the frame of reference moving with the speed of the
waves in the linear approximation, that is CBZ

ffiffiffiffiffiffiffiffi
gh0

p
, reads

v~h

vt
CA~h

v~h

vx
CB

v3 ~h

vx3
Z 0; ð4:1Þ

where AZCB=h0 and B is proportional to CBh
2
0 with a numerical constant

irrelevant for this discussion. This equation applies if the nonlinear and
regularizing terms are of the same order of magnitude, which requires

~h

h0

w
h0

L

� �2
;

where L is the typical length scale for the variation with respect to x, although

the amplitude of ~h is denoted simply as ~h . If on the contrary

~h

h0

[
h0

L

� �2
;

the nonlinearities dominate the effects of dispersion, and wave breaking occurs
with suitable initial conditions, as demonstrated theoretically in the previous
section and as will be seen experimentally in the next section. Note finally that
the opposite condition was found by Stokes (1847) for the applicability of the
linear approximation for waves propagating in shallow water.

Near the singularity the slope of the surface will diverge so that the long-wave
equations are clearly invalid in an inner region. The order ofmagnitude of the (inner)
domain where the shallow water approximation does not apply is found by writing
the equation (2.5) with physical quantities relevant for the wave-breaking problem.
The inner region is the neighbourhood of xZtZ0, where the slope dh/dx becomes
of order 1. The equation f(u)ZKu3 becomes in physical units f(u)ZKau3

with aZðL=C 3
BÞðh0=~h Þ3. This scaling law is derived by noticing that, near the

singularity, ~h ðxÞw ~h ðx=LÞ1=3 and that uwðCB=h0Þ~h .With the scaling laws derived
in §2, one finds that if ðdh=dxÞw1, then twt� with t�Zh0=CB. From the scaling

xwt3=2aK1=2, the width of the inner region is x�w ~h
3=2

=L1=2. Indeed the scaling laws
just derived are only valid until the time of break-up, where another approximation
has to be used. In the wave-breaking problem, one expects regularization (something
allowingpractically todescribewhat happens beyond the singularity occurring in the
shallow water approximation) by taking into account the complete fluid equations
instead of their long-wave limit. This regularization changes the local equations near
the area where overturning occurs, but it does not change the scaling laws for the
extent of this area in time and space. This regularization is purely local, although the
large scales remain described by the long-wave approximation, making the outer
problem. The resulting multi-scale analysis will be presented in a future publication.
5. Experimental validation: breaking waves in shallow water

The above theory has been checked against experiments measuring the spanwise
widening of the breaking of a wave in shallow water. The experiments were
realized on a 2 m long and 1.4 m wide water table. Figure 2 shows this table with
Proc. R. Soc. A



2 m

1.4 m

0.5 m

flat transparent plate

(a)

(b)

wave
maker

foam

screen

lamp

45° mirror

45° mirror

high speed camera

foam

Figure 2. Experimental set-up, (a) top view and (b) side view. A solitary wave is generated by the
rapid motion of the wave maker on one side of a water table. The surface deformations, travelling
along the longitudinal x direction, are visualized by shadowgraphy and recorded by a high-speed
camera.

11Spreading of the crest of breaking wave
its two water tanks and its transparent glass bottom. The level h0 of water above
the bottom is adjusted to reach the desired values (between 1 and 2 cm). The
waves are generated by the motion of a rectangular plate (the wave maker),
which is partially immersed in one of the tanks at the end of the table. The
controlled motion of this thick PVC plate around a horizontal axis pushes a
certain amount of water and so generates a solitary wave that propagates along
the table. On a large scale, this wave is close to being straight and perpendicular
to its direction of motion. The swing motion of the wave maker is simply induced
by its own weight. The generated wave may break or not depending of its height
compared with the water depth. The experimental parameters are then adjusted
to make the wave break in the centre of the working area on the table. To
suppress as much as possible reflections of waves on the vertical side walls, long
stripes of plastic foam have been put on the water surface all around the inner
walls of the table. To get reproducible waves and consequently a reproducible
longitudinal location for the breaking, the starting position of the wave maker is
measured accurately thanks to an optical positioning device and the ending
position is fixed by two ropes attached to each side of the plate, their length
being adjusted to stop the plate motion at the desired value. Underneath the
bottom plate made of glass, a translucent screen permits the observation by
shadowgraphy of the propagating wave and its breaking. A light projector
is mounted 1.5 m above the table and it forms a shadowgraphic image of
the deformed water surface on the screen. A mirror inclined at 458 allows to
observe and record the phenomena occurring inside a square of approximately
32.5!32.5 cm2. A high-speed camera with a rate up to 2.8 kHz records the
waves and their breaking as they move along the table. The optical quality of the
system was checked and calibrated by taking the image of a fixed grid.
Proc. R. Soc. A



(a) (b) (c)

Figure 3. Shadowgraph of a wave breaking recorded by a high-speed camera. (a) tZ25 ms,
(b) tZ100 ms, (c) tZ250 ms. The arrows indicate the location of the singularities that progress
along the transverse direction y. The size of the observation window is 32.5!32.5 cm2.
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Figure 4. Space–time diagram illustrating the progression of the wave along x at a constant speed
vZ0.41 m sK1w
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(white line) and the appearance of the wave breaking (black bent line).

Water depth h0 is 17.4 mm and wave height is 8 mm.

Y. Pomeau et al.12
Experiments were made with five different depths: 15.5, 17.4, 19.7, and 22.5 mm.
For each depth, 10 runs were performed and recorded. Each experiment corresponds
to a different wave height that ismeasured at the beginning of each run by the use of a
sheet of sandpaper held vertically and perpendicular to thewave. This is a simple and
easy way to determine quite precisely (precision is approximately the size of
the grains of the sandpaper) the height of the water waves, which was equal to
respectively 6.3, 8.0, 10.6 and 9.3 mm for the previously given water depths. The
longitudinal extent of the surface deformation is approximately 5 cm. These values
justify the different approximations of the theoretical study presented in this paper
(long wave—relatively small amplitude—negligible dispersion, i.e.
ðh0=LÞ2! ~h=h0!1, see §4). Note also that these values fully justify to neglect the
effects of viscosity and surface tension. Considering the typical viscosity of water (i.e.
10K6 m2 sK1) and the typical duration of one experiment (i.e. 0.3 s), the relevant
viscous length scale is 5.5!10K4 m, much smaller than the typical wave size.
Similarly, considering the surface tension of water (i.e. 0.073 N mK1), the typical
capillary length is approximately 2.7!10K3 m, much smaller than the
typical wavelength.

Figure 3 shows an example of three consecutive images of a wave travelling from
right to left. These images are taken from a high-speed movie recorded at a rate of
2.8 kHz. The vertical and the horizontal sizes of the visualization window are given by
the size of the mirror. The wave appears as the juxtaposition of a white line and
Proc. R. Soc. A



Figure 5. Superimposition of images separated by 5 ms and showing the progression of the wave
(enhanced by taking the horizontal gradient) that appears as vertical stripes. The wave breaking
appears as a black shadow, mainly concentrated at the centre of the figure. Time is proportional to
the longitudinal coordinate and runs from right to left along the horizontal axis. Several sources of
breaking are indicated by arrows before they merge.

13Spreading of the crest of breaking wave
a black line owing to the focusing of light by the wave crest and its defocusing in the
trough. The breaking of thewave is clearly visible on images (b) and (c) by the bending
of the black line travelling ahead of the straight part of the wave with a slightly
larger speed. The arrows of figure 3b point the location of the two singula-
rities propagating along the transversal direction y. Therefore the two lines separate
in time, at least for the short durations of observation after the breaking started.

The longitudinal progression of the waves and that of their breaking can also
be particularly well illustrated by performing space–time diagrams. Taking a
horizontal line (corresponding to a given lateral position y) of each image and
gathering the lines to reconstitute an image illustrate the progression of the wave
along the table. Figure 4 shows an example of such a space–time diagram where
both the travelling wave and its breaking are visible. The white line represents
the wave crest and rear face progression along the x -axis. As the height of
the wave is constant on the distance it travels along the longitudinal
coordinate x, it is not surprising to recover the constant gravitational wave speed
CBZ0:41 m sK1w

ffiffiffiffiffiffiffiffi
gh0

p
(the expected theoretical velocity is CBZ0.46 m sK1). On

the contrary, the black line that is the trace of the breaking during its progression
along the table is slightly bent showing an acceleration of the breaking front ahead
of the rest of the wave.
Proc. R. Soc. A
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Figure 6. Wave-breaking trace as it progresses laterally towards the wall. Superimposition of
images separated by 3 ms. Horizontal axis is proportional to time that runs from right to left. The
depth of the water is 17.4 mm and the height of the wave is 8 mm.
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Figure 7. (a) Linear and (b) logarithmic representation of the progression in the time of the singularity
along the lateral y-axis. The solid curve is a second-order fit of the experimental data points.

Y. Pomeau et al.14
As may be seen by close inspection of figure 3, the breaking is initiated in the
central region of the wave, far from the sidewall. We can then superimpose
a complete series of images: as the wave travels at a constant speed, the
longitudinal coordinate x is then directly proportional to time. To increase the
contrast of the result, the horizontal gradient of each image is taken. Figure 5
presents this superimposition where successive images are separated by a time
delay of 5 ms. It shows the progression of the wave from right to left at constant
speed. The traces left by the wave appear as vertical stripes. The wave breaking
appears as a black shadow, initiated at the centre of the figure. As can be observed,
several sources of breaking appear and progress laterally in time before merging to
form a unique breaking front. To study the lateral progression of one breaking, and
thus of the associated singularities, we focus on one side of the wave which is at the
top of the images. For that, the mirror is simply moved from the centre of the table
to one side. Following the same image analysis as before, we record precisely the
trace of the breaking waves that progress laterally. Figure 6 presents an example
of the superimposition of images separated by 3 ms. The position of the shadow is
easily determined visually. It gives a curve that represents the lateral progression
Proc. R. Soc. A



15Spreading of the crest of breaking wave
in time of the singularity associated with the breaking along the spanwise
direction y (figure 7a). As can be observed in figures 6 and 7a, the shape of this
curve is by simple inspection very close to a square root and finally, after having
determined the initial position y0 of the breaking, a log–log representation of this
curve is given in figure 7b and clearly confirms the square root nature of the lateral
progression of the singularity as predicted in §3.

A systematic image analysis of our 50 cases of waves shows that this
behaviour, illustrated here on a single event, is truly generic: the breaking of the
wave always progresses as the square root of time in the spanwise direction. We
have also checked that the presence of a slight positive or negative slope (the
table can be tilted by a few degrees in the longitudinal direction) has no
significant effect on this behaviour. However, even if all waves break system-
atically with the expected square root behaviour, we have not found a clear
evolution of the values of the coefficient g (yK y0Zg

ffiffi
t

p
) as functions of the wave

height and/or the water depth. This coefficient depends on the initial conditions
for the wave, depending on the uncontrolled small perturbations of the wave
crest. It could be also that the range of variations of water depth and wave height
in our set-up was too limited to permit a significant change in the coefficient of
the square root law.
6. Summary and conclusion

A generic analysis of wave breaking predicts a widening of the crest with the
square root of time after break-up begins. This is based on the general solution of
the equations for a pressure-less inviscid fluid and can be extended, at least near
the break-up, to the fluid equations for a long wave of relatively small amplitude
and negligible dispersion. Experiments carried in a shallow horizontal fluid layer
show this square root law for the breaking of solitary waves excited by a simple
device. Therefore wave breaking can be seen as belonging to the general class of
phenomena described by nonlinear hyperbolic equations, realizing somehow the
prediction made long ago by Riemann who viewed his solution of the equations of
compressible gases more as a piece of mathematics than as something related to
the reality of gases. As we know, he was wrong in this respect, because shock
waves do exist in compressible gases, but his discovery has truly a wider range of
application, in particular to waves in shallow water as we show here. This has
been known for a long time of course, but as far as we are aware no prediction has
been made for the widening of the crest of a wave. We believe that this provides
an interesting domain of investigation because there the regularization (i.e. what
happens after the singularity) is quite different from the one in the much studied
cases of regularization by dispersion or by diffusion, the latter being relevant for
shock waves in gases.
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