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Shape of an elastic loop strongly bent by surface tension: Experiments and comparison with theory
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When a very flexible wire is dipped into a soapy solution, it collapses onto itself. We consider the regions of
high curvature where the wire folds back onto itself, enclosing a capillary film. The shapes of these end loops
are measured in experiments using soap films and compared to a known similarity solution. The sizes of these
structures provide a simple and reliable way to measure surface tension.
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I. INTRODUCTION

When a long and flexible wire such as a hair strand is
dipped into a soapy solution, capillary attraction can make
the wire collapse onto itself. Near the end, a region of large
curvature is formed where a small, closed loop encloses a
capillary film (see Fig. 1). The shape of the loop, called an “end
loop” hereafter, results from the balance of the capillary forces,
which tend to shrink the loop, and the elastic bending forces,
which resist curvature. This end loop can be observed when
the elastocapillary length (see below) is significantly smaller
than the length of the wire: the planar configuration wherein a
disklike capillary films rests on a circular loop is then unstable
[1]. For increasing surface tension, it successively bifurcates
to a planar oval shape, to a twisted saddlelike surface, to a
figure-of-eight shape having a point of self-contact, and then
to a configuration made up of two end loops connected by a
line of self-contact [2].

One interesting feature of the end loop is that it is described
by a similarity solution. The elasticity of the wire and the
capillary attraction give rise to a length scale known as the
elastocapillary length [3,4]. When this natural length is used,
the equations and boundary conditions for the shape of the
end loop are free of any parameter. As a result, its shape is
universal up to a global change of scale [5]. (In particular, the
total length of the wire has no influence on the end loop as any
length in excess is absorbed into the segment with self-contact
which acts like a reservoir.) We carried out experiments using
soap films and compare the observed shapes to the analytical
solution. Measuring the size of the end loop provides a simple
and reliable way to measure the surface tension of the fluid
knowing the bending modulus of the wire.

Since the work of Lagrange and Plateau [6], the equilibrium
shape of a soap film resting on a rigid frame specified by
a three-dimensional (3D) curve is known to be selected by
minimization of the surface area. Since then, there has been a
considerable amount of work on minimal surfaces in various
areas of science, including the geometry of surfaces and the
fluid mechanics of soap films. For the problem at hand, we
only consider planar configurations of the enclosing frame:
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then the shape of the film is readily found as it is just the
domain enclosed by the wire in its plane.

The capillary film deforms the wire by applying a force
per unit length in the direction perpendicular to the wire and
contained in the plane of the film. The equations governing the
equilibrium of the flexible wire are then identical to those for
the collapse of a cylindrical shell under external pressure. This
problem of a closed 2D elastic ring subjected to a distributed
normal force has a long history. At the end of the 19th
century, Lévy [7] reduced the investigation of post-buckled
solutions to an algebraic problem involving elliptic integrals.
More than half a century later, Carrier [8] reconsidered this
problem and solved the case of small deformations near the
onset of buckling; his analytical work was later extended by
Adams [9]. Tadjbakhsh and Odeh [10], followed by several
other authors, solved the boundary-value problem numerically
and determined the post-buckled shapes. Self-contact was first
considered by Flaherty [5], who reports that in the planar
setting and for increasing values of the pressure, the ring
first makes a single point of self-contact and later develops
contact along a segment, then forming a two-headed racket-
like structure (end loops). They also derived the similarity
equations describing these end loops and solved them by
a nonlinear shooting method. Recently, a breakthrough was
achieved by Djondjorov and collaborators [11], who solved
the post-buckled shapes of the elastic ring subjected to external
pressure in a completely analytical manner. They considered
configurations having extended self-contact along a line but
wrongly assumed that the shape of each end loop is given by
scaling down the figure-of-eight solution having a pointlike
contact as obtained at the onset of contact; as a result,
their solution displays a nonphysical discontinuity of moment
at the edge of the region of contact and differs from the
numerical one of Flaherty that is the correct one. The correct
sequence of shapes produced by a progressive increase of the
external pressure is as follows. At the onset of contact, the
curvature at the point of contact is nonzero, and the force of
contact is zero. Then, the curvature at the point of contact
progressively decreases, and the force increases. When this
curvature cancels, it stays at zero, and the pointlike region of
contact becomes a line.

Here, we modify the beautiful analytical solution of
Djondjorov, using the correct condition at the edge of the loop.
It is consistent with the numerical solution of Flaherty but is
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FIG. 1. A rod enclosing a film of a commercial dishwashing
liquid. The Young modulus of the rod is E = 3.55 ± 0.1 GPa,
the radius is ρ = 0.25 mm, and the surface tension of the film is
σ = 27.3 mN/m. The dashed curve is the theoretical prediction scaled
with Eq. (1) (no fitting parameter).

considerably simpler as it does not require nonlinear shooting.
(Our implementation of the numerical solution is provided
in Fig. 5.) Note that a variant of our problem, wherein the
capillary film has been pierced and a capillary bridge extends
along the segment of contact only, has been analyzed based
on order of magnitude arguments in Ref. [12] and solved
numerically in Ref. [13].

II. EXPERIMENTS

We have used nylon fishing lines with different diameters
(2ρ), ranging from 0.25 mm to 0.5 mm. Using a tensile
testing machine, we observed a linear dependence of the stress
with the elongation for stresses less than 2% and determined
the Young’s modulus E � 3.55 ± 0.1 GPa. No irreversible
deformation was observed in tests that were shorter than ten
seconds and with elongation less than 2%. Note that these
wires being obtained by extrusion, their mechanical properties
are expected to be anisotropic. The measured Young’s modulus
is then the longitudinal one, which is precisely the one relevant
to the calculation of the bending modulus (π

4 Eρ4). In the
experiments presented below in which the rod is bent by the
action of capillary forces, we have checked that the maximal
curvature R of the rod is such that ρ/R < 1.3%, so the material
stays in the linear regime. In these experiments, the rod is first
stretched and then heated up to 60 ◦C, a temperature slightly
lower than the glass transition temperature of nylon, for a few
minutes. This removes any residual natural curvature in the
wire. Held by its ends, the rod is immersed in a solution of
surfactant molecules and then gently removed so that a soap
film is enclosed by a loop (see Fig. 1). The wire recovers an
almost straight shape when released, provided the film exists
for no more than about ten seconds. Here, “almost straight”
means having a final radius of curvature at least ten times larger
than that in the presence of the soap film. Each experiment was
performed with a new and perfectly straight rod.

The surface tension of a soap film essentially depends on
the nature of the surfactant molecules, their concentration, the
solvent (pure water, brine, etc.), and the temperature. Surfac-
tants used in this study are commonly used nonionic and ionic
detergents. They include Brij 30 [C12H25(O–CH2–CH2)4OH],
Brij 58 [C16H33(O–CH2–CH2)20OH], Brij 700 [C18H37(O–
CH2–CH2)100OH], Triton X100 (TX 100) [C14H21O(CH2–
CH2–O)10H], cetylpyridinium chloride (CpCl) (from Aldrich),
and a commercial dishwashing liquid. The water used was
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FIG. 2. (Color online) Measured end-loop area A as a function of
the wire diameter for suspended films with surfactant concentrations
above the CMC. The lines indicate the best fits forA = axb. One finds
b = 2.72 ± 0.04 for Brij 30, 2.74 ± 0.04 for Brij 58, 2.65 ± 0.03 for
Brij 700, 2.68 ± 0.03 for TX 100, 2.71 ± 0.05 for CpCl, and 2.69 ±
0.03 for the dishwashing liquid. Inset: The loop area A as a function
of the surface tension for a wire with a radius ρ = 0.25 mm. The line
indicates the best fit for A = cxd . One finds d = −0.69 ± 0.03.

ultrapure (18 M� cm). Surface tension is known to decrease
as the surfactant concentration increases in water and to
stabilize beyond the critical micelle concentration (CMC) [14].
Depending on the surfactant, the surface tension beyond the
CMC ranged in these experiments from ∼27 to ∼57 mN/m. It
was measured by the drop detachment method. The accuracy
of our surface tension measurements is better than 0.5%, and
we find σ = 33.7 mN/m for Brij 30, 48.8 mN/m for Brij 58,
56.9 mN/m for Brij 700, 35.9 mN/m for TX 100, 45.1 mN/m
for CpCl, and 27.3 mN/m for the dishwashing liquid we used.

A typical experimental shape of an end loop enclosing
a thin fluid film is superimposed to the analytical solution
derived later in Fig. 1. We repeated this experiment using the
different surfactants and different rod diameters. To maximize
the accuracy of the measurements, we measured the areas of
the loops and not their widths or heights. The measured area
A is found to be proportional to the radius of the wire to the
power 2.70 ± 0.3 and to the surface tension of the film to the
power −0.69 ± 0.03 (see the inset of Fig. 2).

Estimating a film thickness of 10 μm, the elastogravity
number, defined as the ratio of gravitational energy (roughly
defined as the total weight times half of the loop length) and the
bending energy, is found to range (depending on the surface
tension and/or the rod radius) between 10−3 and 0.05. Gravity
can thus be neglected in these experiments.

III. THEORY

Here, we derive a solution for a planar elastic ring subjected
to a normal force having constant magnitude. This problem
was solved by a nonlinear shooting method by Flaherty [5].
Our solution is based on the recent analytical solution of
Djondjorov [11], which is both more elegant and much easier
to implement numerically. (Instead of nonlinear shooting,
we shall only need to solve a set of nonlinear equations.)
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FIG. 3. (Color online) Notations relevant to the analysis of
planar solutions of the elastica problem. The configuration shown
is the solution for an end loop, using coordinates rescaled by the
elastocapillary length �ec.

We correct the original solution of Djondjorov and use the
appropriate condition of vanishing curvature at the edge of the
region of contact.

We first make lengths dimensionless using the elastocapil-
lary length [3,4]

�ec =
(

B

2σ

)1/3

, (1)

where B = πρ4E

4 is the bending modulus. In rescaled vari-
ables, both the bending modulus and the surface tension are
effectively equal to one.

We use the geometric notations shown in Fig. 3. Let x

and y denote the Cartesian coordinates, s the arclength, t =
(cos ϕ, sin ϕ) the unit tangent, and q = (−sin ϕ, cos ϕ) the unit
normal. Let a and b be any pair of vectors in the plane. The
cross product of two such vectors is the scalar a × b = axby −
aybx . The cross product of the normal unit vector z and an
in-plane vector a denotes the vector obtained by a rotation of
π/2, namely, z × a = (−ay,ax).

Following the classical elastica theory, the internal stress
in the elastic ring is represented by the resultant n(s) and
its moment m(s) about the z axis. Then the local balance
of moments is m′(s) + t(s) × n(s) = 0. Solving for n, this
yields n(s) = T (s)t(s) − m′(s)q(s), where T (s) = n(s) · t(s)
is the yet unknown scalar tension. In rescaled variables, the
constitutive law is m(s) = κ(s), where κ(s) = ϕ′(s) is the
curvature. We, therefore, have

n(s) = T (s)t(s) − κ ′(s)q(s). (2)

The balance of forces is n′(s) + q(s) = 0, where the unit
normal q in the second term accounts for the capillary force
exerted by the film, the value of the surface tension being 1 in
our rescaled units. Inserting the expression for n just obtained,
carrying out the derivative, and making use of the geometrical
relations t′ = κq and q′ = −κt, we find two equations. The
first one reads T ′ = −κκ ′ and can readily be integrated as

T (s) = −κ2(s)

2
+ μ, (3)

where μ is a constant of integration. The second equation then
yields [7]

− κ ′′(s) − κ3(s)

2
+ μκ(s) + 1 = 0. (4)

Note that the last term in this equation is the surface tension,
whose value is 1/2 in our rescaled units.

It is well known that the solution for the end loop is
symmetric [15], and we choose to align the x coordinate axis
with the axis of symmetry. At the point s = sc where the ring
closes up onto itself, the following conditions hold:

y(sc) = 0, ϕ(sc) = π, κ(sc) = 0. (5)

The first two conditions come from symmetry. The last
condition is the so-called Weierstrass-Erdmann corner con-
dition: in the presence of a moving boundary and without
adhesion, the bending moment is continuous across the edge
of the region of contact [16,17], and therefore, the curvature
goes to zero. This condition is not satisfied by Djondjorov’s
solutions.

Using the geometrical identity q(s) = z × t(s) and the
condition of inextensibility r′(s) = t(s), the balance of force
n′(s) + q(s) = 0 can be integrated as n(s) = −z × [r(s) − r0],
where r0 is a constant of integration, called the center of forces.
By symmetry, this r0 lies on the axis of symmetry. Setting the
origin of the coordinate system at this point, we have r0 = 0.
Then, n(s) = −z × r(s), and so

r(s) = z × n(s). (6)

At the point of contact s = sc, where y(sc) = 0, the above
equation implies nx(sc) = 0. There, t(sc) = (−1,0), and so
T (sc) = n · t = −nx = 0. Combining this with Eq. (3) and
with the condition κ(sc) = 0, this shows that the constant of
integration μ vanishes for an end-loop solution connecting to
an extended region of contact, so

μ = 0. (7)

Solutions to Eq. (4) that are even functions of s are of the
form

κ(c,s) = c1 + c2

c3 + cn[c4s − 2K(c5),c5]
, (8)

where ci are constants, cn is the Jacobi elliptic function, and
K denotes the complete elliptic integral of the first kind. This
expression comes from Eq. (38) of Ref. [11]; we have included
a new contribution −2K(c5) in the argument of the Jacobi cn

function that warrants symmetry, so κ(c,s) = κ(c, −s). This is
because we define the origin of an arclength to be at the apex of
the loop as shown in Fig. 3. The five constants c = (c1, . . . ,c5)
are subjected to two types of conditions: (i) the function κ(c,s)
must actually be a solution of the differential Eq. (4) with
μ = 0—as not all of them are, and (ii) it must satisfy the
boundary conditions of Eq. (5).

Analytical expressions for the generic sets of parameters
c that satisfy condition (i) are available in Ref. [11], but
they depend on a series of intermediate quantities defined by
cumbersome expressions. We found it much more convenient
to bypass these expressions and instead enforce the differential
Eq. (4) at a few selected points:

2κ ′′(c,0) + κ3(c,0)

2
= 2 (9a)

2κ ′′(c,1) + κ3(c,1)

2
= 2 (9b)
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2κ ′′(c,2) + κ3(c,2)

2
= 2 (9c)

2κ ′′(c,3) + κ3(c,3)

2
= 2. (9d)

Here, we have chosen, somewhat arbitrarily, to make use of
the integer points 0 � s � 3, but almost any other choice is
possible, and the final result is independent of this choice of
values of s. This yields four equations for the five parameters
(c1, . . . ,c5). A simple counting argument shows that this is
consistent: the second-order Eq. (4) together with condition (7)
and the symmetry condition κ ′(0) = 0 spans a one-parameter
family of solutions.

We still need to use condition (ii) that holds at the edge of the
region of contact [see Eq. (5)] except for the condition y(sc) =
0 that has already been used to prove μ = 0. Recalling the
definition of curvature κ = ϕ′, the second condition ϕ(sc) = π

can be rewritten as an equation for the parameters c and sc:
∫ sc

0
κ(c,s)ds = π

2
. (10)

In this equation, the trial form of κ proposed in Eq. (8) is
inserted, and the integral is computed symbolically in terms
of special functions; an explicit expression for the integral can
also be found in Ref. [11].

Our last equation is the last condition from Eq. (5):

κ(c,sc) = 0. (11)

The six nonlinear Eqs. (9)–(11) are solved numerically for
the five constants c1, . . . ,c5 and for the unknown coordinate sc

of the point of contact. An implementation using the FINDROOT

function in WOLFRAM MATHEMATICA [18] is proposed in the
Appendix. It yields the following root:

c =

⎛
⎜⎜⎜⎝

−3.092 023 442
11.617 026 404 0
3.235 133 312 1
1.255 703 024 8
0.133 149 136 3

⎞
⎟⎟⎟⎠ , sc = 3.421 667 768 6. (12)

The solution is plotted in Fig. 3 with the help of Eq. (6). It is
graphically similar to the solution found by Flaherty [5] using
nonlinear root finding. In rescaled units, the area of the end
loop is

Ath = 1.5609. (13)

in the simulation.

IV. DISCUSSION

The experimental shapes of the end loops obtained using the
different surfactants and wire diameters all match the predicted
one within the camera accuracy (see Fig. 1). Furthermore,
the scalings experimentally found for the loop area, i.e., A ∝
ρ2.70±0.3 (Fig. 2) andA ∝ σ−0.69±0.3 (inset of Fig. 2) agree with
the dimensional analysis predicting that it depends on the wire
radius as ρ8/3 and on the surface tension as σ−2/3. Moreover,
Fig. 4 shows that the experimental data are in quantitative
agreement with the theoretical prefactor of Eq. (13).
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FIG. 4. (Color online) Area divided by �2
ec as a function of the

rod diameter for Brij 30 (pentagons), Brij 58 (squares), Brij 700
(circles), TX 100 (triangles up), CpCl (triangles down), and the
dishwashing liquid (diamonds). Averaging and taking into account
the uncertainties for measurements of Young’s modulus and surface
tensions, we find that A/�2

ec = 1.55 ± 0.04. The solid line is the
theoretical value from Eq. (13).

V. CONCLUSION

Strongly post-buckled shapes induced by a force normal
to an elastic rod have been investigated—both experimentally
and theoretically—by the means of capillary end loops. The
agreement between the analytical solution we have obtained
and measurements is quantitatively good.

Measuring the size of the end loop provides a direct and
convenient way to measure either the bending modulus of a
wire or the surface tension of a suspended film. Starting from
a reference surfactant solution whose surface tension is known
and from a given wire, or starting from a wire whose radius and
Young’s modulus are known, the determination of an unknown
surface tension is straightforward using the above results. This
provides a simple, accurate, and very cheap method to measure
surface tension.

APPENDIX: A MINIMAL NUMERICAL SOLUTION

The solution for the end loop requires a numerical root find-
ing. A numerical solution of the set of Eqs. (8)–(11) using WOL-
FRAM MATHEMATICA [18] is shown in Fig. 5 and requires fewer
than ten lines of code. This solution is represented in Fig. 3.

FIG. 5. A minimalist solution of the end-loop equations, using
WOLFRAM MATHEMATICA.
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