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Abstract

The buckling of a thin elastic film bound to a compliant substrate is studied: we
analyze the different patterns that arise as a function of the biaxial residual com-
pressive stress in the film. We first clarify the boundary conditions to be used at the
interface between film and substrate. We carry out the linear stability analysis of
the classical pattern made of straight stripes, and point out secondary instabilities
leading to the formation of undulating stripes, varicose, checkerboard or hexagonal
patterns. Straight stripes are found to be stable only in a narrow window of load
parameters. We present a weakly nonlinear post-buckling analysis of these patterns:
for equi-biaxial residual compression, straight wrinkles are never stable and square
checkerboard patterns are found to be optimal just above threshold; for anisotropic
residual compression, straight wrinkles are present above a primary threshold and
soon become unstable with respect to undulating stripes. These results account for
many of the previously published experimental or numerical results on this geome-
try.
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1 Introduction

The buckling of multi-layered materials is a classical subject in mechanics
and has received continuous attention due to its importance in the design of
sandwich panels (Allen, 1969). Recent efforts in this field were motivated by
the understanding of wrinkles generation in human skin, or by applications to
the templating and assembly of materials (see e.g. Genzer and Groenewold,
2006, for a review).

In this paper, we consider the buckling of a thin and stiff film bonded to
a compliant substrate. This can be realized experimentally by depositing a
thin metallic film onto an elastomer (Bowden et al., 1998; Huck et al., 2000;
Yoo et al., 2002) and letting the system cool down at room temperature. Due
to the mismatch in thermal expansion coefficients between the film and sub-
strate, residual stress is induced in the film. Another experimental realization
uses gels (Sultan and Boudaoud, 2007), for which swelling by absorption of a
liquid replaces thermal expansion. When the residual stress is compressive, it
can lead to buckling into straight wrinkles (Bowden et al., 1998), a pattern
that has cylindrical symmetry, i. e. is invariant in one direction. Secondary
patterns may also appear; the crests and valleys of the wrinkles can organize
into labyrinthine patterns (Bowden et al., 1998) or zigzag patterns, also named
herringbone or chevron (Huck et al., 2000); yet another pattern, called square
checkerboard, can be formed when maxima and minima of the film deflection
are distributed at the vertices of a square lattice (Yoo et al., 2002).

These patterns have been investigated numerically. Chen and Hutchinson
(2004) studied periodic checkerboard or herringbone patterns by simulating
a single elementary cell, a square or a parallelogram. Huang et al. (2004)
first considered the case of a Winkler foundation, and later (Huang et al.,
2005) the case of a thick elastic foundation; they observed straight wrinkles,
checkerboard, labyrinths or herringbone patterns depending on the loading
conditions.

The stability analysis of the unbuckled state, which yields the critical differ-
ential strain and the wavelength of the wrinkles at threshold, is now classi-
cal (Allen, 1969). In order to determine the amplitude of the wrinkles, Chen
and Hutchinson (2004) performed a nonlinear analysis of the cylindrical pat-
terns, which was later extended to the case of a substrate with finite depth
by Huang et al. (2005). Independently, Mahadevan and Rica (2005) proposed
an analysis of herringbone patterns based on amplitude equations; this ap-
proach is suited to the analysis of large wavelength perturbations on top of
the straight wrinkles, an assumption that does not apply to the geometry of
herringbones.
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Fig. 1. Geometry of the problem and notations.

The stability of cylindrical patterns has not been addressed analytically. Can
one explain the variety of patterns reported in the literature using the classical
model of a plate with residual compressive stress on an elastic foundation?
Under what loading can each type of pattern be observed? What are their
amplitudes and wavelengths? These questions will be addressed here. The
present contributions are twofold: we first clarify the boundary conditions to
be used at the interface between film and substrate; in a second step, we
analyze the linear stability of the cylindrical pattern and show that it can
become unstable with respect to undulating stripes, varicose, checkerboard,
and hexagonal patterns.

The paper is organized as follows. Section 2 recalls the classical formulation
of the problem and the expression of the elastic energy of the system. In
Section 3, we determine the boundary conditions at the interface between the
film and the substrate and derive the effective stiffness of the foundation. The
linear stability of the straight wrinkles is studied in section 4. The following two
sections deal with the nonlinear analysis of the secondary patterns: undulating
stripes in Section 5, checkerboards and hexagons in Section 6. We conclude in
Section 7 by summarizing our results and showing their relevance to previous
experimental and numerical studies.

2 Formulation

We consider a thin elastic film bound to an elastic foundation, which buck-
les under residual biaxial compressive stress. In the following, we write the
elastic energy of the system, remaining in the framework Hookean elasticity
(linear elastic response). The film is described by the Föppl–von Kármán the-
ory (FvK) for thin elastic plates (Timoshenko and Gere, 1961) undergoing
moderate (but nonzero) deflections, while the foundation is considered to be
a half-infinite linearly elastic solid.
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2.1 Film

We denote E, ν and h the Young’s modulus, Poisson’s ratio and thickness of
the film, respectively, see Fig. 1. The reduced Young’s modulus, E∗, is defined
as

E∗ =
E

1 − ν2
. (1)

In order to define the residual stress in the film, assumed to be homogeneous,
we consider the configuration such that the substrate is in its natural con-
figuration (this is not necessarily a stable equilibrium). Let (−ηx) and (−ηy)
denote the principal strains in the film in this configuration, with respect to
the natural configuration of the film; let the in-plane x and y axes be aligned
with the associated principal strain directions; then, z is the direction per-
pendicular to the mean plane of the film (see Fig. 1 for the geometry and
notations). The differential strain (ηx, ηy) is the load parameter of the system.

In the deformed configuration, the displacement of the center-surface of the
film is noted (u(x, y), v(x, y), w(x, y)), where (u, v) are the in-plane compo-
nents and w the deflection. The strain in deformed configuration is calculated
using a classical approximation, first introduced by Föppl, that consists in
neglecting all nonlinear terms depending on the in-plane displacement u or v.
The strain tensor is then defined as

εxx = −ηx +
∂u

∂x
+

1

2

(
∂w

∂x

)2

, (2a)

εxy =
1

2

(
∂u

∂y
+

∂v

∂x
+

∂w

∂x

∂w

∂y

)
, (2b)

εyy = −ηy +
∂v

∂y
+

1

2

(
∂w

∂y

)2

. (2c)

The stress tensor is given by Hookean elasticity (plane stress) as

σxx =
E

1 − ν2
(εxx + ν εyy), (3a)

σxy =
E

1 + ν
εxy, (3b)

σyy =
E

1 − ν2
(εyy + ν εxx). (3c)

The load parameter (ηx, ηy) can be related to the biaxial residual compressive
stress (σ0

xx, σ
0
yy) in the film by the constitutive equations above

σ0
xx = −E∗ (ηx + ν ηy), σ0

xy = 0, σ0
yy = −E∗ (ν ηx + ηy).
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In plate theory, the energy Ef of the film per unit area is the sum of a stretching
contribution Efs and a bending contribution Efb:

Ef = Efs + Efb, (4)

which take the following form

Efs =
1

Lx Ly

h

2

∫
σαβ εαβ dx dy, (5)

Efb =
1

Lx Ly

D

2

∫
(∆w)2 dx dy, (6)

where Lx and Ly define the size of the rectangular domain considered, which is
assumed to be very large compared to all other dimensions — we are actually
considering an infinite domain but formally introduce two large lengths Lx

and Ly which allow us to write easily averages per unit area, such as the ones
written above for the energy. By convention, Greek indices run over in-plane
directions: above, α and β can take the values x or y. The bending modulus
of the film is defined, for a homogeneous and isotropic material, as

D =
E h3

12 (1 − ν2)
. (7)

2.2 Substrate

The substrate, which fills the half-space z < −h/2, has a Young’s modulus Es

and Poisson’s ratio νs. Introducing the Fourier transform of the film deflection

ŵ(kx, ky) =
∫

dx dy w(x, y) exp[−i(kxx + kyy)], (8)

where i =
√−1, the energy of substrate, which is described by linear elasticity,

can be written as the sum of the energies of each Fourier mode:

Es =
1

Lx Ly

∫
dkx dky E∗

s

√
k2

x + k2
y ŵ(kx, ky) ŵ(−kx,−ky). (9)

Its dependence on the substrate’s material properties is collected into a single
parameter, E∗

s , which is proportional to Es and is a function of Poisson’s ratio
νs. This dependence on νs reflects the relevant choice of boundary conditions to
be imposed the interface between the film and the substrate, which we shall
elucidate in Section 3; until then, we leave this dependence undetermined,
through a function e(νs), given later in equation (15):

E∗
s = Es e(νs). (10)
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Note that the star notation for E∗
s does not imply that its dependence takes

the same form as in equation (1) for the film.

2.3 Optimization problem

The equilibrium states of the system are those that minimize the total energy:

Et({u, v, w}) = Es({w}) + Efb({w}) + Efs({u, v, w}). (11)

We employ curly braces to stress on the fact that these energies are function-
als of u, v and w, i. e. that they depend on all the values of the functions
u(x, y), v(x, y) and w(x, y). This energy has to be minimized with respect
to the displacement (u(x, y), v(x, y), w(x, y)), for given values of the material
parameters and differential strain (ηx, ηy). The main purpose of this paper is
to find minimizers of this energy for various values of the parameters.

2.4 Classical buckling analysis: cylindrical patterns

The planar configuration u = v = w = 0 is always a solution to the equa-
tions of equilibrium corresponding to the energy (11). Its linear stability is a
classical topic Allen (1969): this planar configuration is stable below a critical
compressive strain and buckles above it. The buckling mode has the form

w(x, y) = A cos(k x).

We refer to this pattern as the cylindrical pattern. Here and everywhere in
the paper, ‘cylinder’ has to be understood in its mathematical meaning of
a geometric surface invariant by translation along a direction, which does
not necessarily have a circular cross-section — here, the ‘cross-section’ is a
sinusoid.

In the case of isotropic 1 compression ηx = ηy = η, the buckling threshold
and wavenumber are

ηI
c =

1

1 + ν

(
3 E∗

s

2 E∗

)2/3

(12a)

and

k =
1

h

(
12 E∗

s

E∗

)1/3

. (12b)

It turns out that this sinusoidal buckling mode is an exact solution of the
nonlinear equations for a plate on an elastic foundation, even at finite distance

1 Here we use ‘isotropic’ as a synonym for ‘equi-biaxial’. There is no ambiguity as
we do not need to consider the transverse direction for the film.

6



above the buckling threshold. Based on this remark, Chen and Hutchinson
(2004) found the amplitude of the post-buckled pattern:

A = h

(
η

ηI
c

− 1

)1/2

. (12c)

Remarkably enough, the wavelength that is unstable at threshold is the one
with lowest energy above threshold: k depends on the material parameters but
not on the load parameters ηx or ηy.

3 Effective stiffness of the substrate

In this section, we return to the formulation of the problem and compute the
effective modulus E∗

s associated with the deformations of the substrate. To
this end, we derive the boundary conditions to be enforced at the interface
between film and substrate. It is not clear what boundary conditions should
be written there 2 . On one hand, the Föppl–von Kármán (FvK) energy of the
film is derived under the assumption that no traction is applied along the lower
and upper edges of the plate, and so this implies that no force is transmitted
along the interface. On the other hand, the film is bound to the substrate,
and the displacement must be continuous at the interface. One cannot impose
both free boundary conditions and imposed displacement at the interface as
this would involve too many boundary conditions for the film. This point
seems to be unsettled so far; without a rigorous justification, Huang et al.
(2005) choose to impose vanishing longitudinal tractions on top of substrate
while Huang (2005) imposes a vanishing longitudinal displacement on top
of substrate. Chen and Hutchinson (2004) discusses both types of boundary
conditions.

The key remark is that the plate equations can be derived from 3D elasticity
by expansion with respect to a small parameter. In this expansion, the in-plane
and the transverse stress come with different orders of magnitudes: the trans-
verse stress is much smaller. In contrast, both the in-plane and the transverse
stress components are a priori of comparable magnitude in the substrate as it
is described by a theory with no small or large parameter. As we shall show,
the normal stress σzz imposed by the substrate at the interface is relevant for

2 Determining which boundary conditions must be enforced in an asymptotic (plate,
rod or shell) problem is a tricky question. For instance, it is well known that it is
not consistent to enforce boundary conditions imposing different displacements on
both sides of a plate, eventhough this is possible for a thick elastic medium. Here,
the problem is similar: we show that it is not consistent to enforce the continuity of
tangential tractions at the interface when the film is very thin.
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the equilibrium of the film and is balanced by bending terms. In contrast, the
shear stress σzα (with α = x, y) imposed by the substrate at the interface is
negligible in front the large tensile stress from the film’s perspective.

To determine the boundary conditions at the interface, one can in principle
proceed as follows. The displacement (u(x, y), v(x, y), w(x, y)) at the interface
is first set arbitrarily; the equations of equilibrium are then solved in the sub-
strate and, in particular, the traction applied at the interface by the substrate
onto the film is derived; the equations for the film are solved with these im-
posed traction at the edges; this leads ultimately to the deformed shape of
the film. The actual solution is found by requiring that this deformed shape of
the film is consistent with the displacement (u(x, y), v(x, y), w(x, y)) that was
assumed at the beginning of the procedure. This warrants the continuity of
displacement at the interface. In what follows, we outline the implementation
of this approach and derive the effective boundary conditions to be applied at
the interface.

We shall first make three assumptions, which are relevant to the limits we
consider, namely that strain is small, that the film’s slope is everywhere small,
and that the substrate is very compliant with respect to the film i. e. the
contrast of elastic moduli is large, C = E∗/E∗

s → ∞:

(1) the in-plane displacement (u, v) is of order w2/λ;
(2) w/λ � 1;
(3) C (w h)/λ2 � 1.

These assumptions will be checked to be consistent at the end. Here, λ ∼ 2π/k
is the typical wavelength of the pattern. The first two conditions are scaling
assumptions underlying the Föppl-von Kármán (FvK) plate theory. These
two conditions imply in particular that the in-plane displacement u and v
are much smaller than the transverse one, w. Note that these assumptions
are consistent with the weakly post-buckled cylindrical buckling, as described
by equations (12): for this particular pattern, the conditions 1 and 2 fol-
low directly from the scalings of the FvK equations; for condition 3, we get
C(wh)/λ2 ∼ C(Ah)k2 ∼ C C−2/3 = C1/3 which is indeed a large number by
assumption.

By assumptions 1 and 2, u and v are much smaller than w. As a result, and
from the substrate’s perspective, the boundary conditions to be applied at the
interface should be the continuity of the deflection w, and also u = v = 0
(plane strain). The elasticity of a half-infinite domain with purely transverse
displacement applied at its boundary is solved by elementary methods Allen
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(1969). The resulting stress at the interface is given by its Fourier components




σ̂int
xz (kx, ky)

σ̂int
yz (kx, ky)

σ̂int
zz (kx, ky)


 =

Es

(1 + νs)(3 − 4νs)




i (1 − 2νs) kx

i (1 − 2νs) ky

2 (1 − νs)
√

kx
2 + ky

2


 ŵ(kx, ky). (13)

As outlined earlier, we shall now solve the plate problem, and determine the
shape of the film subjected to a force per unit area f = (fx, fy, fy) along its
lower interface, with fi = −σint

iz , where σint
iz is the inverse Fourier transform of

the left-hand side of equation (13).

For this plate problem, first consider the case of purely normal applied forces,
that is set the tangential traction fx = −σint

xz and fy = −σint
yz to zero. Then,

the constitutive equations (3) in the film yield σαβ = O(E εαβ), where the O
notation means ‘is of the same order of magnitude or smaller’. By the definition
of strain, εαβ = O((w/λ)2). Therefore, σαβ = O(E (w/λ)2) = O(E k2 w2),
where k = 2π/λ is the typical wavenumber of the patterns.

When the in-plane interface traction fx and fy at the interface are properly
considered, the solution outlined at the previous paragraph must be corrected
with a new, inhomogeneous term in the equation for the in-plane equilibrium
of the film:

h
∂σαβ

∂xβ

= fα,

where Greek indices like α again range over in-plane directions, x and y.
However, it turns out that this correction is very small in the limit we consider.
Indeed, consider the ratio ρ of the source term fα in the previous equation, to
the typical value of the left-hand side as determined in the previous paragraph
with fα = 0. This ratio reads

ρ =
fα

h
∂σαβ

∂xβ

The numerator fα = −σint
αz can be estimated as fα ∼ Es k w from equation (13).

The denominator can be estimated as h k σαβ, using the estimate given previ-
ously for the in-plane stress σαβ. Combining all this yields:

ρ ∼ Es k w

E h k3 w2
∼ 1

C h k2 w
(14)

By our assumption (3), this is the inverse of a large number, and ρ � 1:
the tangential traction applied by the substrate at the interface does not sig-
nificantly affect the solution for the film. By neglecting the tangential forces
applied on the film, one makes a negligible error 3 . This justifies the use of

3 The subtle point is that, although the transverse force fz is of the same order
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the energy (4) for the film, which implicitly assumes that no in-plane traction
is applied 4 . This argument shows as well that there is no point to enforce
the continuity of the tangential stress at the interface, the stress applied by
the substrate being negligible from the film’s perspective anyway.

Therefore, the boundary conditions to be used for the substrate at the interface
are u = 0, v = 0, and the continuity of σzz. In this framework, the Fourier
components of the interfacial deflection ŵ are related to the interface normal
stress by:

σ̂int
zz (kx, ky) = 2E∗

s ŵ(kx, ky)
√

kx
2 + ky

2,

where the effective stiffness E∗
s is found by identification with equation (13):

E∗
s = Es e(νs), where e(νs) =

1 − νs

(1 + νs)(3 − 4νs)
. (15)

After integration over the variables x, y and z, one obtains the elastic energy
of the substrate per unit area in the form of equation (9).

It is erroneous to replace the boundary condition u = v = 0 at the interface
by σαz = 0. With these boundary conditions, the in-plane displacements u
and v can be calculated and they are of the same order of magnitude as w at
equilibrium. By continuity of the displacements at the interface, this leads to
an in-plane strain in the film of order εαβ ∼ w/λ. The stretching energy in the
film is then of order Eh(w/λ)2, to be compared to its bending energy, of order
Eh3(w/λ2)2. This would imply that the stretching energy in the film is much
larger than its bending energy — roughly (λ/h)2 times larger to be accurate.
In these conditions, it is inconsistent to use the FvK theory.

4 Linear stability of the cylindrical pattern

Having clarified the formulation of the problem, we proceed to the analysis
of buckling of a thin film bound to a compliant substrate. We take advantage
of the existence of an exact solution to the post-buckling problem, describing
the cylindrical pattern, to carry out the stability analysis. This calculation has
some similarities with the analysis of stability of the Euler rod solution in a
long rectangular plate clamped along its long edges and subjected to biaxial

of magnitude as the in-plane ones, fα, by equation (13), fz cannot be neglected as
the film is much more compliant to imposed transverse displacements to which it
reacts by bending, than to imposed in-plane displacements to which is reacts by
stretching.
4 If longitudinal force applied on the film at the interface were not negligible, one
would have to include in the energy of the film an additional potential term, pro-
portional to the in-plane displacements u and v.
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stress (Jensen, 1993; Audoly, 1999; Audoly et al., 2002; Audoly and Pomeau,
2008).

4.1 Perturbed deflection w(x, y)

As noted in Section 2.4, an exact solution w(x, y) = A cos(k x) describing the
post-buckled cylindrical pattern is available (Chen and Hutchinson, 2004).
We call this solution the cylindrical base state. In the present Section, we
analyze its stability when subjected to infinitesimal perturbations. We show
that this well-studied pattern is in fact stable in a very limited window of load
parameters.

To this end, we introduce a perturbation to the deflection in the form w(x, y) =
A cos(k x) + δw(x, y). In bifurcation analysis, the symmetries of the base so-
lution can be exploited (Manneville, 1990). Indeed, according to a general
result, it is sufficient to consider perturbations (linearly unstable modes) that
are eigenvalues of the operators associated with the underlying symmetries.
Here, both the equations and the base solution are invariant by translation
along the y axis with arbitrary amplitude, and by a translation along the
x axis, possibly combined with a mirror symmetry, with an amplitude that
is a multiple of the wavelength, x �→ x ± 2π/k. Because of the invariance
by the continuous group of translations along the y axis, the perturbation
δw(x, y) can be assumed to have a harmonic dependence 5 on the variable
y; let us denote k′ the associated wavenumber. Because of the invariance by
the discrete set of translations and mirror-symmetries with respect to the x
axis, δw(x, y) can be searched in the form of a harmonic function of x with
wavelength 2mπ/k, m being an integer. In the following we will restrict our
analysis to m = 0 and m = 1, as higher values of m are expected to lead to a
weaker coupling with the base solution A cos(kx) and so to be less favorable
energetically. The unstable modes that we need to consider are therefore of
the form cos(kx + k′y), cos(kx − k′y) and cos(k′y): the first two terms corre-
spond to m = ±1 and the last term to m = 0. Combining them with arbitrary
amplitudes Ai, we write:

δw(x, y) = A1 cos(kx + k′y) + A2 cos(kx − k′y) + A3 cos(k′y), (16)

Using trigonometric identities, the deflection of the film, including the base
solution A cos(k x), can be then written as:

w(x, y) = A cos(k x)+b sin(k x) sin(k q y)+c cos(k x) cos(k q y)+d cos(k q y).
(17)

5 Here, we recover the classical result that the different Fourier modes of the per-
turbation in the y direction are uncoupled at linear order in the analysis of stability.
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a) b)

c) d)

(C) (U)

(V) (K)

Fig. 2. Base cylindrical solution and possible unstable modes: undulating, varicose,
checkerboard. The plots were obtained with the following parameters for Eq. 17:
(a) A = 1, b = c = d = 0, (b) A = 1, b = .5, c = d = 0, (c) A = 1, c = .5, b = d = 0,
(d) A = d = .7, b = c = 0.

where q = k′/k is the rescaled longitudinal wavevector, b = A2 − A1, c =
A1 + A2 and d = A3. In this form, the numbers b, c and d appear as ampli-
tudes of the undulating mode, the varicose mode and the checkerboard mode,
respectively. These modes are visualized in Fig. 2. Their amplitudes b, c and
d are taken to be infinitesimal in the present section which is concerned with
linear stability, and small but finite in Sections 5 and 6 where the weakly
post-buckled geometry is addressed.

4.2 Solving for in-plane displacement

In the present and following sections, we proceed to solve the equations of the
problem in perturbations with respect to the small parameters b, c and d. We
consider the deflection w(x, y) to be the main unknown of the problem: our first
step is to calculate the in-plane displacement (u, v) in terms of w. This involves
minimizing the total energy (11) with respect to the in-plane displacement
u(x, y) and v(x, y) only. Minimization with respect to the deflection w(x, y)
will be carried out in a second step, and we consider w(x, y) as fixed for now.
The stretching energy is the only energy contribution that depends on the in-
plane displacement in equation (11). The Euler-Lagrange equations expressing
the condition of stationarity of the energy with respect to u(x, y) and v(x, y)
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are the equations of in-plane equilibrium for the film:

∂σxx

∂x
+

∂σxy

∂y
= 0 and

∂σxy

∂x
+

∂σyy

∂y
= 0. (18)

These equations can be transformed by plugging in the definition (3) of in-
plane stress σαβ as a function of strain, and expressing the strain itself ex-
pressed in terms of the displacement by equation (2). The result is a set of
two coupled linear partial differential equations 6 for the unknowns functions
u and v, with inhomogeneous terms depending on w in a nonlinear way. We
solve the resulting equations for u(x, y) and v(x, y). As explained above, this
involves plugging in equations (3) and (2) into equation (18), and then using
the trial form of the deflection in equation (17). The inhomogeneous terms in
these equations are functions of the variables x and y: their Fourier decom-
position is computed symbolically, and the equations for u and v are solved
Fourier mode by Fourier mode (this reduces the problem to the solution of
a linear system of equations, as the coupled partial differential equations are
transformed into a set of linear equations for the unknown Fourier coefficients
of u and v). Skipping over the details of this calculation, carried out with the
help of a symbolic calculation software, one arrives at an explicit solution for
the in-plane displacement:

u(x, y) = −ν k q2

2
c d sin(kx) +

k

16
(2A2 + (b2 − c2)(ν q2 − 1)) sin(2kx)

+
k

2
Ab sin(kqy) +

∑
χ=0,1

{
k q2 (4q2 − ν)

4 (1 + 4q2)2
(b + (−1)χ c) d sin(k (x − (−1)χ 2 q y))

+
k

32
(b+(−1)χ c)2 sin(2k (x−(−1)χ q y))+

k q2 (q2 − ν)

2 (1 + q2)2
Ad sin(k(x+(−1)χ q y))

+
k (8 + 2 (2 − ν) q2 + q4)

4 (4 + q2)2
A ((−1)χ b + c) sin(k (2x − (−1)χ q y))

}
(19a)

6 In the FvK plate theory, the in-plane equilibrium equations are linear with respect
to u and v as the strain has been linearized with respect to these functions from
the beginning.
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and

v(x, y) =
k q

2
b d sin(kx) − k ν

2q
A c sin(kqy)

+
k

16 q
((ν − q2)(b2 − c2) + 2 q2 d2) sin(2kqy)

+
∑

χ=0,1

{
k q (1 + 2(2 − ν) q2 + 8 q4)

4 (1 + 4q2)2
(b + (−1)χ c) d sin(k (x − (−1)χ 2 q y))

−k q

32
(b+(−1)χ c)2 sin(2 k (x−(−1)χ q y))+

k q (νq2 − 1)

2 (1 + q2)2
Ad sin(k (x+(−1)χ q y))

+
k q (−4 + νq2)

4 (4 + q2)2
A (b + (−1)χ c) sin(k (2 x − (−1)χ q y))

}
. (19b)

4.3 Energy as a function of the perturbation parameters

Having solved the Euler-Lagrange equations for u(x, y) and v(x, y), we have
in fact determined to optimum in-plane displacement associated with a given
deflection w(x, y). Elimination of the in-plane displacement provides the op-
portunity to write the stretching energy as a function of the deflection only.
Let us write E†

fs({w}) this reduced stretching energy, function of w only (as
opposed to the initial energy Efs which was a function of u and v as well):

E†
fs({w}) = min

u,v
Efs({u, v, w}). (20)

The reduced stretching energy E†
fs({w}) can be found by plugging the so-

lutions (19a) and (19b) for u(x, y) and v(x, y) into the initial definition of
stretching energy (5). Combining with the form of the deflection proposed in
equation (17), carrying out the integration over the in-plane directions symbol-
ically, and expanding the result up to quadratic terms in the small parameters

14



b, c and d, we find:

E†
fs(A, b, c, d, k, q) =

Eh

2 (1 − ν2)


(ηx)

2 + (ηy)
2 + 2ν ηx ηy − ηx + ν ηy

2
k2A2

+
1

16
k4A4 − 1

4
(ηx (1 + ν q2) + ηy (ν + q2)) k2 (b2 + c2) +

k2 q2

2
(ν ηx + ηy) d2

+
k4

16 (4 + q2)2

(
16 + 8 (1 + 2ν)q2 + (2 + 8 ν − ν2) q4 + ν q6

)
A2 b2

+
k4

16 (4 + q2)2

(
48 − 32 ν2 + 8 (3 + 2ν − 2ν2) q2 + (4 + 8 ν − 3 ν2)q4 + ν q6

)
A2 c2

− k2 q2

8 (1 + q2)2
(ν + 2 (1 + ν − ν2) q2 + ν q4) A2 d2




+ O(b2 c2, c2 d2, d2 b2, b4, c4, d4). (21)

Similarly, we can derive expressions for the bending energy of the film and for
the substrate energy as functions of the amplitudes A, b, c, d and wavenum-
bers k and q of the film. This is much easier than for the stretching energy,
as they are quadratic functions of the deflection and do not depend on u
and v. They are easily computed in Fourier space, noting that there are four
nonzero Fourier modes for w(x, y) by equation (16): the fundamental mode
with amplitude A and wavevector (kx, ky) = (k, 0), and three modes corre-
sponding to the perturbation, with amplitudes (c± b)/2 and d, and wavenum-
bers (kx, ky) = (k,±qk) and (kx, ky) = (0, qk) respectively. This yields

Efb(A, b, c, d, k, q) =
1

4
Dk4

(
A2 +

1

2
(b2 + c2)(1 + q2)2 + d2q4

)
(22)

Es(A, b, c, d, k, q) =
1

2
E∗

s k
(
A2 +

1

2
(b2 + c2)

√
1 + q2 + d2q

)
(23)

In equations (21–23), we have derived closed form expressions for the three
contributions to the energy E†

t (A, b, c, d, k, q) of the system:

E†
t (A, b, c, d, k, q) = E†

fs + Efb + Es. (24)

This energy is known as a function of the amplitudes A, b, c, d and wavenum-
bers k, q of the film, of the loading (ηx, ηy) and of material parameters. Note
that this expression does not involve any approximation other than neglecting
higher order terms.

In following, we rewrite this energy in dimensionless form and carry out the
stability analysis of the straight stripes based on the expressions just derived.
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4.4 Dimensionless quantities

We could start the linear stability analysis at this point but it is more conve-
nient to introduce rescaled quantities first as this allows us to get rid of most
of the parameters of the problem. We define the quantity

h∗ =
h√

12 (1 − ν2)

as unit of length in the transverse direction; we redefine the stiffness contrast
between the two layers as

C =
E∗ h

E∗
s h∗ , (25)

which is by assumption a large number (note that the previous definition of the

contrast, which differs from the present one by a numeric factor
√

12(1 − ν2)
of order unity, has only been used in the estimates of Section 3: it is licit
to alter the definition of C by a factor of order unity). The natural unit of
energy per unit area is then E h/C4/3, as can be shown by balancing the
various energy contributions. We rescale the various physical quantities of the
problem according to:

ηx = C−2/3 ηx, ηy = C−2/3 ηy, (26a)

A = h∗A, (26b)

b = h∗b, c = h∗c, d = h∗d (26c)

k = C−1/3 k/h∗ (26d)

E = E h C4/3 E , (26e)

where bars denote rescaled quantities, such as ηx or A, which we now use in
place of the original quantities.

4.5 Recovering the cylindrical base state

When b = c = d = 0, most of the terms in the various contributions to

the energy vanish, and one is left with a total energy E†
t({w}) = E†

fs({w}) +
E fb({w}) + E s({w}) that is a biquadratic function of A, i.e. a polynomial of
order 4 of A containing only even powers. Minimizing with respect to A and k,
we obtain the harmonic profile, the rescaled wavenumber and the amplitude
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of the cylindrical mode as

w(x, y) = A cos(k x) (27a)

A = 2
√

ηx + ν ηy − 3(1 − ν2) (27b)

k = 1. (27c)

This cylindrical pattern is solution whenever the argument of the square root
in the amplitude is positive:

ηx + ν ηy − 3(1 − ν2) ≥ 0 (27d)

In particular, the initial buckling threshold for isotropic compression reads
(taking ηx = ηy in the previous expression):

ηI
c = 3 (1 − ν) (27e)

We recover the results of Section 2.4 for isotropic compression, in dimensionless
variables: the critical strain ηI

c , the wavenumber k and the amplitude A given
above are the same as those in equations (12a), (12b) and (12c). As mentioned
earlier, the wavenumber does not depend on the load parameters ηx or ηy and
the optimal wavelength does not evolve above threshold.

4.6 Stability analysis

The cylindrical pattern is an exact solution of the FvK equations, and not
merely a solution in the weakly post-buckled limit. This allows one to study
the linear stability of this pattern analytically. As explained earlier, one needs
to study the stability with respect to three types of patterns, the undulating
stripes, the varicose and checkerboard modes, which are associated with the
amplitudes b, c and d respectively. The values of A and k given in equation (27)
that characterize the cylindrical pattern are plugged into equations (21–24)
for the energy. This yields the total dimensionless energy as a quadratic form
of the variables (b, c, d):

E†
t = β(q, ηx, ηy, ν)b

2
+ γ(q, ηx, ηy, ν)c2 + δ(q, ηx, ηy, ν)d

2
. (28)

The expressions for the functions β, γ and δ are available but they are too
long to be given here.

Whenever

min
q

β(q, ηx, ηy, ν) < 0, (29a)

min
q

γ(q, ηx, ηy, ν) < 0 (29b)
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or
min

q
δ(q, ηx, ηy, ν) < 0, (29c)

the cylindrical buckling pattern is unstable with respect to undulations, to
varicose or to checkerboard patterns, respectively. To determine when the
condition (29a), for instance, is satisfied it suffices to compute the value of q
for which β is minimum, to plug back the optimal value of q in this expression,
and to track the changes of sign of the resulting expression for β as a function of
loading parameters ηx and ηy. In other words, the curve for marginal stability
with respect to undulating patterns has the following implicit equation in the
plane of initial differential strain (ηx, ηy):


β(q, ηx, ηy, ν) = 0,

∂β
∂q

(q, ηx, ηy, ν) = 0.
(30)

Let us fix the value of Poisson’s ratio, and imagine we can solve these two
equations for q and ηy as a function of ηx. Doing so, we obtain the curve
of marginal stability 7 in the plane (ηx, ηy) of loading parameters, and the
wavenumber q of the linearly unstable mode. Since the explicit analytical form
of the function β is available from the previous analysis, this curve of marginal
stability can be plotted numerically in the plane (ηx, ηy), for any value of ν.

The same reasoning holds for varicose and checkerboard patterns, using the
functions γ or δ in place β. This yields a stability diagram with three curves
denoting marginal stability, with respect to each of the potentially unstable
modes.

4.7 Results

These curves of linear stability are shown in Figures 3 and 4. The first figure
is for the case ν = .3. The coordinates are the differential strain, namely the
transverse strain ηx and the longitudinal strain ηy with respect to the direction
of the straight stripes — in equation (27a), we have implicitly defined the y
direction to be along the stripes.

The values of the longitudinal wavenumber q = k′/k rescaled by the wavenum-
ber k of the primary instability are indicated along the curves for marginal
stability. In the case of undulating patterns, the minimum of the function β
is always reached for q = 0; moreover, the curve of marginal stability has
a very simple implicit equation, which reads ηy = ηI

c . This means that the

7 A geometric interpretation of equations (30) is that they define (in an implicit
manner) the envelope of the family of curves βq(ηx, ηy) = 0 in the plane (ηx, ηy),
where q is the parameter of the family of curves βq = 0.
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Fig. 3. Diagram of linear stability for the cylindrical pattern (straight stripes) in
the plane of load parameters (ηx, ηy), for ν = .3. The dot-dashed line corresponds
to the case of isotropic compression, ηx = ηy. The light grey domain in the lower
left corner is where the planar configuration is stable. Its boundary is given by
equation (27d). It passes through the point I = (ηI

c , η
I
c) corresponding to the initial

buckling threshold under isotropic loading. The dark grey region is where the cylin-
drical pattern exist but are unstable: when ηy > ηx, the preferred stripe orientation
is along x and not y as assumed here. The three curves correspond to a loss of lin-
ear instability, from cylindrical (stripe) patterns, to either undulating (U) patterns
(b 	= 0), checkerboard (K) patterns (d 	= 0), or varicose (V) patterns (c 	= 0).

cylindrical pattern becomes unstable by a long wavelength instability leading
to undulating patterns, as soon as ηy ≥ ηI

c .

As indicated along the curves, the varicose instability takes place with a finite
longitudinal wavelength, but this wavelength goes to infinity (q → 0) when the
point I of initial isotropic buckling is approached. For checkerboard patterns,
the most unstable longitudinal wavenumber is q = 1 along a finite portion of
the curve, up to a point T beyond which q becomes strictly less than 1.

One of the striking features of this graph is that secondary instabilities can
take place right at the initial buckling threshold as the curves of marginal sta-
bility all converge to the point I with coordinates (ηx, ηy) = (ηI

c , η
I
c) (this is the

classical threshold for the initial bifurcation into a cylindrical pattern under
isotropic compression). Therefore, the cylindrical patterns cannot be observed
under equi-biaxial loading, ηy = ηI

c , as they become unstable as soon as they
emerge. This surprising feature of the bifurcation diagram can be understood
by recalling that there are many possible cylindrical buckling patterns above
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Fig. 4. Diagram of linear stability of the cylindrical patterns, for various values of
Poisson’s ratio of the film. We use the same conventions as in Fig. 3.

the initial threshold, corresponding to the free orientation of the generatrices
in the plane of the film — imposing the generatrices to be along y was only
a matter of convention. What appears as an immediate secondary bifurcation
here is essentially a recombination of the many cylindrical modes available at
the initial threshold, with different orientations. The checkerboard pattern, for
instance, has q = 1 near the point I, which means that it is a superposition
of two cylindrical patterns having the same physical wavenumber k and per-
pendicular orientations. Similarly, the instability leading to undulations takes
place with large longitudinal wavelengths (q → 0) near the point I, which
means that it reduces locally to a change in the orientation of the cylindrical
pattern.

The dependence of the bifurcation diagram on Poisson’s ratio of the film is
given in Figure 4. Although the curves of linear stability move with ν, the
overall shape of the diagram does not change substantially.

The consequences for the patterns are as follows. In the case of anisotropic 8

loading (more accurately, for ηx > ηy, since we have assumed the stripes of
primary patterns to be aligned with the y axis), the primary bifurcation, at
ηx = ηI

c , leads to cylindrical patterns that appear as stripes along the y axis.

8 Since we use ‘isotropic’ as a synonym for ‘equi-biaxial’, we also use ‘anisotropic’
to denote a loading that is biaxial but not equi-biaxial.
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When ηy reaches ηI
c = 3(1 − ν) that is, in physical units

ηy ≥ ηI
c =

1

1 + ν

(
3 E∗

s

2 E∗

)2/3

,

the cylindrical patterns become unstable with respect to undulations with a
large wavelength λy � λ (q = 0). In the case of a system with a finite size
L, this secondary instability takes place with the smallest possible value of
q ∼ 1/L, at a threshold slightly higher than ηy = ηI

c .

In the case of isotropic compression η = ηx = ηy, the primary instability is
about to take place when η reaches ηI

c = 3(1 − ν), i.e. in physical units

η ≥ ηI
c =

1

1 + ν

(
3 E∗

s

2 E∗

)2/3

.

Concomitantly, both the undulating stripes and checkerboard become unsta-
ble. The undulations of the stripes have again a large wavelength (q = 0); for
the checkerboard pattern, the maxima and minima of deflection are located
at the vertices of a a square grid (q = 1). The mesh size of this square grid is
λ = 2π/k = 2π in rescaled variables (k = 1), that is

λx = λy = λ = 2π/k = 2π h (E∗/(12 E∗
s ))

1/3

in physical units.

This competition between cylindrical and checkerboard patterns has been
studied before by Chen and Hutchinson (2004). However, they have set ar-
bitrarily the mesh size of the square grid to (

√
2 λ), which is not the optimal

checkerboard mode. As a result, they overestimate the energy of the checker-
board mode and we believe that their conclusions regarding the pattern selec-
tion are erroneous.

Under both anisotropic or isotropic load, we do not expect the varicose mode
to be observed as the instability threshold from cylindrical to varicose pat-
terns takes place at loads much larger than for undulating stripes or for the
checkerboard mode. For this reason, we will not carry out the post-buckling
analysis of this mode.

To summarize, two cases must be discussed. For anisotropic loading, we expect
an undulating mode with large wavelength by a secondary instability affecting
straight stripes; the analysis of post-buckled undulating stripes is presented in
Section 5. Under isotropic loading, the undulating mode is in competition with
a checkerboard mode obtained by a superposition of two cylindrical modes
with identical wavelengths oriented in perpendicular directions. A nonlinear
analysis is needed to study the competition between the undulating mode and
the checkerboard mode in this case, see Section 6.
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5 Post-buckling analysis of undulating stripes

According to the results of Section 4, the cylindrical pattern (straight stripes)
first becomes unstable towards undulating stripes when loading is anisotropic
(biaxial but not equi-biaxial) — see Fig. 3 in particular. This undulating pat-
tern appears with an infinite longitudinal wavelength at secondary threshold
η = 3(1 − ν). Under isotropic (equi-biaxial) loading, undulating stripes are
important too: this is one of the few modes that can potentially be observed
above threshold. In this section, undulating stripes are analyzed in the post-
buckling regime.

5.1 Formulation

The procedure allowing one to compute the elastic energy of the post-buckled
undulating pattern is almost the same as that for the linear stability of sec-
tion 4.1. The only difference is that quartic terms in b̄ must be retained in the
stretching energy:

E†
fs(b, q) =

Eh

2C4/3


− 1

1 − ν2

(
ηx + νηy − 3(1 − ν2)

)2

− 1

4(4 + q2)2

(
32 − 32

√
1 + q2 + 16(ηy − 1 + 3ν)q2 − 16q2

√
1 + q2

−
(
ηx − (8 − ν)ηy + 3(9 − 8ν + ν2)

)
q4−2q4

√
1 + q2 +(ηy−10+3ν)q6−q8

)
b
2

+
1

128(1 − ν2)

(
3 − ν2 + 4νq2 + (3 − ν2)q4

)
b
4


 (31)

The substrate energy and the bending energy of the film are quadratic with
respect to the variable b by definition. Their expression is not modified; they
are obtained by setting c = d = 0 in Eqs. (22–23).

5.2 Above threshold

At a small distance above threshold, the undulating mode keeps its analytical
form δw = b sin(k x) sin(k q y), as established in weakly nonlinear perturba-
tion theory (Manneville, 1990). We set

ηy = 3(1 − ν) + ε,

and take ε as a small parameter. The total energy E†
t (b, q) is again minimized

with respect to its parameters. This yields the wavenumber and amplitude of
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the undulating mode, at lower order in ε:

q = 2

(
2

ηx + 9 + 3 ν

)1/2

ε1/2, (32a)

b = 8

(
1 − ν2

(3 − ν2) (ηx + 9 + 3 ν)

)1/2

ε, (32b)

and the post-buckling energy (using straight stripes as a reference):

E†
t (b, q) − E†

t (b = 0) = − 16 E h (1 − ν2)

(3 − ν2) (ηx + 9 + 3 ν) C4/3
ε4. (32c)

The wavelength of the pattern, proportional to 2π/q, is infinite at threshold
and decreases as 1/(ηy −3(1−ν))1/2 = 1/ε1/2 above threshold. The amplitude
of the perturbation on top of straight wrinkles increases linearly with the
distance to threshold ε (note that the amplitude A of the cylindrical mode can
be considered as constant above secondary threshold in a first approximation).
The energy is less than that of straight stripes by an amount of order ε4.

5.3 Far above threshold

Far above secondary threshold, the perturbation probably does not remain of
the form δw = b sin(k x) sin(k q y). It could be found by a systematic expan-
sion in powers of ε of a solution to the whole set of equations for the film on an
elastic foundation, but this is an unpleasant calculation. Here, we continue to
use the same simple trial form of the deflection far above threshold; our aim is
to derive approximate results concerning the behavior of undulating stripes.
These results will be used in the second companion paper as a validation for an
approximate buckling model introduced there (Audoly and Boudaoud, 2007b).

The total energy is minimized with respect to b and q; recall that q was
defined as the ratio of the longitudinal to transverse wavenumbers ky/kx, which
is also the ratio of the transverse to longitudinal wavelengths λx/λy where
λx is assumed constant and given by the analysis of straight stripes. The
values of the optimal rescaled longitudinal wavenumbers q are shown in Fig. 5,
together with the band of wavenumbers for which there is a decrease in energy
with respect to straight stripes, i. e. E†

t (b, q) < E†
t (b = 0); the amplitude b

of the pattern with lowest energy is also given. The main results are that
the (longitudinal) wavelength of undulations becomes of the same order of
magnitude as the (transverse) wavelength of the cylindrical base pattern, and
that the amplitude of the undulations becomes comparable to the amplitude
of the cylindrical pattern.
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Fig. 5. Analysis of post-buckled undulating stripes under equi-biaxial compression,
as a function of the compressive strain η. Left : range of unstable rescaled longitudinal
wavenumber q (grey sector) and optimal wavenumber is plotted (curve). Right :
amplitude b of the undulations rescaled by the amplitude of the cylindrical pattern
A.

6 Post-buckling analysis of checkerboard and hexagons

In the case of isotropic loading, the linear stability analysis of the cylindri-
cal pattern in Section 4 revealed the possibility of an instability leading to a
checkerboard mode instability. Indeed, by a general result of linear stability
theory (see Manneville, 1990), an isotropic system undergoing a linear insta-
bility has a whole family of linearly unstable modes available at threshold,
corresponding to the free orientation of the wavevector; in this case, square
or hexagon patterns are obtained generically by nonlinear coupling between
these linear modes.

In this section, we analyze post-buckled checkerboard and hexagonal patterns.
We focus on the case of isotropic (equi-biaxial) loading: the case of anisotropic
loading does not need to be considered as checkerboards or hexagons are then
superseded by undulating stripes, see Section 4. Checkerboard patterns have
already been encountered in the stability analysis of section 4. Hexagonal
patterns have not been discussed so far: they arise from the analysis of linear
stability with m = 2. In Section 4.1, we have only studied the cases m = 0 and
m = 1, arguing that modes with a larger values of m have a higher energy. This
claim is confirmed at the end of the present section, as the hexagon patterns
turn out to be less favorable than checkerboards.

6.1 Formulation

Both the checkerboard and hexagon patterns are obtained as a superposition
of n = 2 or n = 3 cylindrical modes, respectively, along evenly distributed
orientations, making an angle π/n with respect to each other: we consider a
profile given by the superposition

w(x, y) =
n−1∑
i=0

A cos
{
k
(
x cos

π i

n
+ y sin

π i

n

)}
, (33)

24



a) b)(K) (H)

Fig. 6. Patterns obtained by superposition of n cylindrical modes with same wave-
length but different orientations, see equation (33): (a) checkerboard patterns, n = 2;
(b) hexagons, n = 3.

with n = 2 for checkerboard and n = 3 for hexagonal modes. For the sake of
simplicity, we restrict the presentation to isotropic loading, ηx = ηy = η, and to
the case where the amplitude A is the same for all the Fourier modes, indexed
by i, in the superposition. In principle, theses amplitudes Ai could depend
on the index i. We did investigate the general case where the amplitudes Ai

can be tuned independently, and found that the case of identical amplitudes
Ai = A for all modes is always optimal under isotropic loading.

The bending energy of the film and the substrate energy are computed by
plugging equation (33) into equations (6) and (9):

Es(A, k, n) =
n

2
E∗

s k A2, (34a)

Efb(A, k, n) =
n

4
D k4 A2. (34b)

The stretching energy is computed along the same lines as earlier in section 4.1.
We first solve equations (18) for the in-plane displacements. For checkerboards
(n = 2), we find

u(x, y) =
1

4
A2 k ((1 − ν) cos(k x) + cos(k y)) sin(k x), (35a)

v(x, y) =
1

4
A2 k (cos(k x) + (1 − ν) cos(k y)) sin(k y), (35b)

and the stretching energy reads

E†
fs(A, k, n = 2) =

E h

32 (1 − ν)

(
32 η2 − 16 η A2 k2 + (3 − ν) A4 k4

)
. (36)
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Similarly, for hexagons (n = 3), the in-plane displacement reads

u(x, y) =
1

8
A2k

(
2 (2(1 − ν) + (3 − ν) cos(kx)) cos(

√
3ky/2) sin(kx/2)

+ (1 − 3ν + 2 cos(kx) + cos(
√

3ky)) sin(kx)
)
, (37a)

v(x, y) =
1

8
√

3
A2k

(
(−4ν + (3 − ν) cos(kx)) sin(

√
3ky/2) cos(kx/2)

+ (3 − ν + 3 cos(kx)) sin(
√

3ky)
)
. (37b)

When plugged into the stretching energy of the film, this yields

E†
fs(A, k, n = 3) =

E h

128 (1 − ν)

(
128 η2 − 96 η A2 k2 + 3 (11 − 5ν) A4 k4

)
.

(38)
The total energy is again the sum of the three contributions

E†
t (A, k, n) = Es(A, k, n) + Efb(A, k, n) + E†

fs(A, k, n). (39)

6.2 Results

In the following, we will use the rescaled quantities A, k, etc. defined in Sec-
tion 4.4. In particular, the rescaled differential strain is defined as η = C2/3 η.
We carry out a weakly nonlinear analysis slightly above the primary threshold
where, according to the results of Section 4, the films goes directly from its
unbuckled configuration to either undulating stripes, a checkerboard pattern
or hexagons. Slightly above threshold, we write the loading as

η = 3 (1 − ν) + ε,

where ε is a small parameter. By minimizing the total energy E†
t (b, q) we

determine the buckling parameters at lower order in ε. For the checkerboard
mode (n = 2), we find

k = 1, (40a)

A =
(

2

3 − ν

)
ε1/2, (40b)

and the energy release by buckling reads

E†
t (A) − E†

t (A = 0) = − 2Eh

(1 − ν)(3 − ν)C4/3
ε2. (41)
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Fig. 7. Comparison of the energies of various buckling patterns for isotropic loading
as a function of the Poisson ratio ν, obtained by weakly nonlinear analysis: cylinders
(n = 1) from equation (44), checkerboard (n = 2) from equation (41), and hexagons
(n = 3) from equation (43). The zero of energy is the unbuckled configuration,
A = 0. The three patterns in competition have the same buckling threshold; just
above threshold, the energy of the checkerboard is always the lowest, for all values
of Poisson’s ratio. From equation (32c), the energy difference between straight and
undulating stripes is of order ε4 although the energy differences between all the
other patterns are of order ε2: straight stripes and undulating stripes with a large
longitudinal wavelength are undistinguishable just above threshold.

For the hexagonal mode (n = 3), we find

k = 1, (42a)

A =
4√

11 − 5ν
ε1/2, (42b)

and the energy release by buckling reads

E†
t (A) − E†

t (A = 0) = − 6Eh

(1 − ν)(11 − 5ν)C4/3
ε2. (43)

The wavelength of the two patterns remains identical to that of the cylindrical
pattern. Their amplitude increases as the square-root of the distance ε to
threshold.

The energy release of the checkerboard, the hexagons and the cylindrical pat-
tern are compared as a function of ν in Fig.7. The energy of the cylindrical
pattern is given by

E†
t (A) − E†

t (A = 0) = − Eh(1 + ν)

2(1 − ν)C4/3
ε2. (44)
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In this plot, we take the unbuckled configuration (A = 0) as the zero of the
energy.

It appears that the checkerboard is always the most favorable. Compared to
other patterns, it lowers the energy by an amount that is quadratic in the
distance to threshold ε. Under isotropic load, we therefore expect a transition
directly from the unbuckled configuration to a checkerboard pattern.

7 Conclusion

We have investigated the buckling of a thin film bound to a compliant sub-
strate in the presence of biaxial residual compressive stress in the film. A
sinusoidal cylindrical pattern with a constant wavelength λ is an exact solu-
tion of the equations of equilibrium above an initial buckling threshold (Chen
and Hutchinson, 2004). This pattern appears as straight wrinkles in experi-
ments (e.g Bowden et al., 1998). We analyzed its linear stability with respect
to four possible modes:

• undulating stripes (similar to chevron or herringbone mode observed in ex-
periments) which are obtained from straight wrinkles by lateral undulations
of the crests and valleys,

• varicose which correspond to a modulation of the amplitude of the straight
wrinkles, along its crests and valleys,

• checkerboard which are obtained by superposition of two perpendicular sets
of straight stripes,

• hexagons which are obtained by superposition of three sets of straight
stripes, at 2π/3 angles.

We found that the cylindrical pattern (straight stripes) becomes unstable when
compression is increased over a well-defined threshold. The pattern selected
above this threshold depends on the isotropy of the residual stress in the film,
as summarized in Fig. 8.

When residual compression in the film is equi-biaxial, the straight wrinkles are
never a stable equilibrium solution. The mode with lowest energy above the
initial buckling threshold is a checkerboard pattern with a spatial wavelength
given by the wavelength λ of the classical cylindrical solution. This corrects
the conclusions of Chen and Hutchinson (2004) who assign a non-optimal
wavelength,

√
2 λ, to the checkerboard pattern in their simulations and find

that their energy is higher than that of herringbones. Our analysis explains
the observation of checkerboard patterns in numerical simulations under equi-
biaxial loading by Huang et al. (2004). Checkerboard patterns have not been
reported to appear spontaneously in experiments. This might be due to the
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Fig. 8. Schematic phase diagram of a compressed thin film bonded to a compliant
substrate: (P) unbuckled film, (C) cylindrical pattern comprising straight stripes,
(U) undulating stripes, (K) checkerboard. This diagram is obtained by folding the
diagram in Fig. 3 to allow the patterns to align along either principal strain direc-
tion, and complementing it with the results of the nonlinear analyses. Note that
the results of the present paper are valid close to thresholds; much beyond, other
patterns such as labyrinths can appear.

fact that labyrinths are more stable far enough above threshold, or that the
residual stress is never perfectly isotropic nor homogeneous in the presence
of imperfections. Nevertheless, Yoo et al. (2002) report that checkerboard
patterns can be forced by applying and removing a micro-patterned stamp
with a square grid; in numerical experiments, Huang et al. (2004) managed to
select a herringbone pattern by initializing the simulation appropriately. These
two observations support the existence of a competition between undulating
stripes, checkerboard and herringbone patterns, as studied in Sections 5 and 6.
In any case, our main result is that the checkerboard pattern minimizes the
energy of the system above the primary buckling threshold, when load is equi-
biaxial.

Under anisotropic loading — more accurately, under biaxial but not equi-
biaxial loading —, the film first buckles into a cylindrical pattern correspond-
ing to straight stripes, which is stable in some window of the loading parame-
ters (ηx, ηy). At a threshold strictly above the initial threshold, this cylindrical
pattern becomes unstable, see Fig. 8: the crest and valleys of the wrinkles bend
while remaining locally parallel (undulating stripes), with a longitudinal wave-
length that is very large at threshold (q = 0) and becomes comparable to the
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first wavelength λ well above threshold (q ∼ 1). In their numerical simulations
with anisotropic loading, Huang et al. (2004, 2005) indeed observe the desta-
bilization of straight to wavy wrinkles, although they do not investigate the
wavelengths systematically. Our analysis of undulating patterns is also prob-
ably relevant to explain the fact that herringbones are often observed near
boundaries (Bowden et al., 1998; Huck et al., 2000), where edge effects make
the strain effectively anisotropic.

Again, it should be emphasized that the system may well have several equi-
librium solutions (multi-stability) and that metastable solutions, which are
stable but do not correspond to a global energy minimum, may well be ob-
served in the experiments. As a matter of fact, it has been shown by Ohzono
and Shimomura (2005) that thermal annealing and loading/unloading cycles
can transform a labyrinthine pattern into a checkerboard-like pattern. These
labyrinthine patterns have not been studied in the present paper, as they can-
not be written as a linear superposition of a finite number of cylindrical linear
modes; the analysis of such disordered patterns is open for future research.

We have investigated the buckling of thin films bound to compliant substrates,
and obtained a rich phase diagram. The analysis of linear stability reveals that
there is a family of unstable modes at threshold, corresponding to the free
orientation of the straight wrinkles. Complex pattern appear very close to, or
even at the primary instability threshold; although they look quite different
from the well-studied one-dimensional pattern, they can be obtained as a
linear superposition of such harmonic modes. We have emphasized the crucial
role of the anisotropy of the loading in the pattern selection. Herringbone
patterns emerges naturally from the present analysis as the extrapolation of
the undulating mode to the limit of large residual stress (strongly post-buckled
regime) — we refer to the companion papers (Audoly and Boudaoud, 2007b,c)
for a detailed analysis.
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