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We consider the equilibrium shapes of a thin, annular strip cut out in an elastic sheet.
When a central fold is formed by creasing beyond the elastic limit, the strip has been
observed to buckle out-of-plane. Starting from the theory of elastic plates, we derive a
Kirchhoff rod model for the folded strip. A non-linear effective constitutive law
incorporating the underlying geometrical constraints is derived, in which the angle the
ridge appears as an internal degree of freedom. By contrast with traditional thin-walled
beam models, this constitutive law captures large, non-rigid deformations of the cross-
sections, including finite variations of the dihedral angle at the ridge. Using this effective
rod theory, we identify a buckling instability that produces the out-of-plane configura-
tions of the folded strip, and show that the strip behaves as an elastic ring having one
frozen mode of curvature. In addition, we point out two novel buckling patterns: one
where the centerline remains planar and the ridge angle is modulated; another one where
the bending deformation is localized. These patterns are observed experimentally,
explained based on stability analyses, and reproduced in simulations of the post-
buckled configurations.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Although the idea that a sheet of paper can be folded along an arbitrary curve is unfamiliar to many, performing this
activity has been a form of art for quite some time. Bauhaus, the extinct German school of art and design, was a pioneer in
developing the concept of curved folding structures by the end of the 1920s (Wingler, 1969). This practice often yields
severely buckled and mechanically stiff sculptures featuring interesting structural properties and reveals new ways to think
about engineering and architecture (Engel, 1968; Jackson, 2011; Schenk and Guest, 2011). Traditional origami has had a
strong influence in the solution of many practical problems, to cite a few, the deployment of large membranes in space
(Miura, 1980) and biomedical applications (Kuribayashi et al., 2006). However, exploring this long established art form still
has a lot of potential. Since the work by Huffman (1976), an elegant and groundbreaking description of the geometry of
curved creases, more attention has been devoted to this subject (Duncan and Duncan, 1982; Fuchs and Tabachnikov, 1999;
Pottmann and Wallner, 2001; Kilian et al., 2008). A mechanical approach of structures comprising curved creases has
recently been proposed (Dias et al., 2012) motivated by the intriguing 3d shapes shown in Fig. 1. In the present paper, we
build upon this recent work by further exploring the mechanical models governing folded structures.

Folded structures combine geometry and mechanics: they deform in an inextensible manner and their mechanics is
constrained by the geometry of developable surfaces (Spivak, 1979; do Carmo, 1976). Here, we consider one of the simplest
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Fig. 1. Buckling of an annular elastic strip having a central fold: (a) model cut out in an initially flat piece of paper; (b) one of the goals of this paper is to
represent this folded strip as a thin elastic rod, the ridge angle being considered as an internal degree of freedom.

M.A. Dias, B. Audoly / J. Mech. Phys. Solids ] (]]]]) ]]]–]]]2
folded structures: a narrow elastic plate comprising a central fold, as shown in Fig. 1. The role of geometry is apparent from
the following observations, which anyone can reproduce with a paper model: the curvature of the crease line is minimum
when the fold is flattened, a closed crease pattern results into a fold that buckles out of plane, while an open crease pattern
results in a planar fold. These and other geometrical facts have been proved by Fuchs and Tabachnikov (1999).

The mechanics of thin rods has a long history (Dill, 1992; Love, 1944; Antman, 1995), and is used to tackle a number of
problems from different fields today, such as the morphogenesis of slender objects (Wolgemuth et al., 2004; Moulton et al.,
2013), the equilibrium shape of elongated biological filaments — such as DNA (Shi and Hearst, 1994) and bacterial flagellum
(Powers, 2010) — and the mechanics of the human hair (Audoly and Pomeau, 2010; Goldstein et al., 2012). The classical
theory of rods, known as Kirchhoff's rod theory, assumes that all dimensions of the cross-section are comparable: the
consequence is that the cross-sections of the rod deform almost rigidly as long as long as the strain remains small. This
assumption does not apply to a folded strip: its cross-sections are slender, as shown in the inset of Fig. 1(a), and, as a result,
they can bend by a large amount. In addition, the dihedral angle at the ridge can also vary by a large amount.

Vlasov's theory for thin-walled beams overcomes the limitations of Kirchhoff's theory by relaxing some kinematic
constraints and considering additional modes of deformations of the cross-section. This kinematic enrichment can be
justified from 3d elasticity: assuming a thin-walled geometry, asymptotic convergence of the 3d problem to a rod model of
Vlasov type has been established formally (Hamdouni and Millet, 2006, 2011). This justification from 3d elasticity requires
that the deformations are mild, however: the cross-sections can only bend by a small amount away from their natural shape.

Mechanical models have been proposed to capture the large deformations of thin-walled beams. The special case of
curved cross-sections must be addressed starting from the theory of shell: in this case, the bending of the centerline
involves a trade-off between the shell's bending and stretching energies (Mansfield, 1973; Seffen et al., 2000; Guinot et al.,
2012; Giomi and Mahadevan, 2012). By contrast, the strip that we consider is developable; it can be studied based on an
inextensible plate model, in which the stretching energy plays no role. A model for a thin elastic strip has been developed
Sadowsky (1930) in the case of a narrow ribbon, and later extended by Wunderlich to a finite width (Wunderlich, 1962).
These strip models have found numerous applications recently, see Starostin and van der Heijden (2008) for instance. They
have been developed independently of the theory of rods, as they make use of unknowns that are tied to the developability
constraint.

Here, we develop a unified view of strips and rods. We show that elastic strips fit into the framework of thin rods: the
equations for the equilibrium of a narrow, inextensible plate are shown to be governed by Kirchhoff's equations for an
inextensible rod. To show this, we identify the relevant geometrical constraints and derive of an effective, non-linear
constitutive law. A unified perspective of strips and rods brings in the following benefits: instead of re-deriving the
equations of equilibrium for strips from scratch, which is cumbersome, we show that the classical Kirchhoff equations are
applicable; we identify for the first time the stress variables relevant to the strip model, which is crucial for stability
problems; the extension of the strip model to handle natural (geodesic) curvature, or the presence of a central fold becomes
straightforward, as we demonstrate; stability analyses and numerical solutions of post-buckled equilibria can be carried out
in close analogy with what is routinely done for classical rods.

This paper is organized as follows. In Section 2, we start by the smooth case, i.e. consider an elastic strip without a fold,
and derive an equivalent rod model for it. In Section 3, we extend this model to a folded strip, which we call a bistrip; this is
one of the main results of our paper. In Section 4, we derive circular solutions for the bistrip. Their stability is analyzed in
Section 5, and we identify two families of buckling modes: one family of modes explains the typical non-planar shapes of
the closed bistrip reported earlier, while the second mode of buckling is novel. The predictions of the linear stability analysis
are confronted to experiments in Section 6, and to simulations of the post-buckled solutions in Section 7.
2. Smooth case: equivalent rod model for a curved elastic strip

We start by considering the case of a narrow strip having no central fold and show how it can be described using the
language of thin elastic rods. The model we derive extends the model of Sadowsky (1930) to account for the geodesic
curvature of the strip and bridges the gap between his formulation and the classical theory of elastic rods.
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Fig. 2. Analysis of a narrow elastic strip, without any fold. (a) One of the lateral boundaries is used as a centerline (thick curve), and its curvature in the
reference configuration defines the geodesic curvature κg. (b) The underlying mechanical model is an inextensible plate: in the deformed configuration, the
generatrices, shown by the dashed lines, can make an arbitrary angle with the tangent d3 to the centerline. As a result, the cross-section (thin solid lines)
can be significantly curved. The inextensibility constraint is used to reconstruct the mid-surface of the plate, based on the centerline shape r ðsÞ (thick curve)
and on the material frame diðsÞ: this allows the strip to be viewed as a thin rod.
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2.1. Kinematics and constraints

We consider an inextensible elastic plate of thickness h and width w with a large aspect-ratio, h5w. In its undeformed
configuration, the strip is planar. Under the action of a mechanical load, it is deformed into a 3d shape, as sketched in Fig. 2.
The deformed strip is parameterized by a space curve rðsÞ, called the centerline, and by an orthonormal frame
ðd1ðsÞ; d2ðsÞ; d3ðsÞÞ, called the material frame. To define the centerline, we pick one of the lateral edges, which is the thick
curve in the Fig. 2. The name ‘centerline’ is used for consistency with the theory of rods even though this curve is off the
center of the strip. We denote by s be the arc-length along this edge, and by rðsÞ the position in space of the centerline. The
derivation with respect to arc-length is denoted by a prime. By definition, the tangent r ′ðsÞ is a unit vector. Since the plate is
inextensible, the arc-length s will be used as a Lagrangian variable. The direct orthonormal frame diðsÞ, with i¼1, 2, 3, is
defined in such a way that d3 is the tangent to the centerline,

d3ðsÞ ¼ r ′ðsÞ ð1Þ
and that d1ðsÞ and d3ðsÞ span the tangent plane to the midsurface of the elastic strip at the point rðsÞ. Then, the unit vector
d2ðsÞ ¼ d3ðsÞ � d1ðsÞ is normal to the midsurface at the edge rðsÞ. By construction, the material frame is orthonormal and
direct:

diðsÞ � djðsÞ ¼ δij; ð2Þ

for any indices i; j¼ f1;2;3g and for any s. Here, δij denotes Kronecker's symbol, equal to 1 if i¼ j and 0 otherwise.
The rate of rotation of the material frame with respect to the arc-length is captured by a vector ωðsÞ, which we call the

Darboux vector or the twist-curvature strain. It is such that, for any i¼1, 2, 3,

d 0
iðsÞ ¼ωðsÞ � diðsÞ: ð3Þ

In classical rod theories, the rotation gradient ωðsÞ measures the strain associated with the bending and twisting modes.
Here, we use a plate model, and the bending strain is measured by the curvature form (second fundamental form) of the
mid-surface, which we denote by k . Near a generic point rðsÞ on the centerline, we use the frame ðd3ðsÞ; d1ðsÞÞ tangent to
surface: in this frame, the curvature tensor k ðsÞ is represented by a symmetric matrix,

k ðsÞ ¼
k33ðsÞ k13ðsÞ
k13ðsÞ k11ðsÞ

 !
ðd

3
;d

1
Þ
:

From the differential geometry of surfaces (Spivak, 1979; do Carmo, 1976), the gradient of the unit normal to a surface along
any tangent direction can be computed from the second fundamental form. In particular, if we consider the gradient of the
normal d2ðsÞ along the tangent d3ðsÞ to the centerline, we have d′

2ðsÞ ¼ �k ðsÞ � d3ðsÞ ¼�ðk13ðsÞd1ðsÞþk33ðsÞd3ðsÞÞ. Identifying
with the case i¼2 in Eq. (3), we find that the plate's bending strain and the equivalent rod's curvature strain are related by:
k13ðsÞ ¼ω3ðsÞ and k33ðsÞ ¼�ω1ðsÞ, whereωj ¼ω � dj denote the components of the Darboux vector in the material frame. We
use this to express the second fundamental form of the midsurface of the plate, in terms of the Darboux vector ω of the
equivalent rod:

k ðsÞ ¼
�ω1ðsÞ ω3ðsÞ
ω3ðsÞ k11ðsÞ

 !
ðd

3
;d

1
Þ
: ð4Þ

We assume that the midsurface of the plate is inextensible. This has two consequences. First, by Gauss' theorema
egregium (Spivak, 1979), its Gauss curvature, defined as the determinant of k , is zero:

Cdðω; k11Þ ¼ 0; where Cdðω; k11Þ ¼�det k ¼ω1k11þðω3Þ2: ð5Þ
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Second, we note that the quantity ω2, which defines the geodesic curvature of the centerline with respect to the midsurface,
is conserved by isometries (Spivak, 1979). Let κg ¼ω0

2 denote the signed curvature of the edge (centerline) in the flat
configuration of reference: in the actual configuration, the conservation of the geodesic curvature implies

CgðωÞ ¼ 0; where CgðωÞ ¼ κg�ω2: ð6Þ

In Eq. (4), we have expressed the ‘microscopic’ strain k in terms of the strain ω of the equivalent rod, and of an additional

‘internal’ strain variable k11. Eq. (5) is a kinematic constraint. It could be used to eliminate the strain variable k11 in favor ofω; we
will refrain to do so, however, as this requires the additional assumption ω1a0. Eq. (6) is a second kinematic constraint
applicable to the equivalent rod model.

2.2. Sadowsky's elastic energy

Let us denote by kn the typical curvature of the plate, jk j � kn. We assume that the strip is narrow, in the sense that the

variations of the curvature tensor on distances comparable to the width w remain small compared to kn:wj∇k j5kn.

Therefore, we ignore the dependence of the curvature strain on the transverse coordinate: in the entire cross-section
containing the centerline point rðsÞ, we approximate the curvature tensor by k ðsÞ. This approximation has been used in the

past to describe plates with straight centerlines (Sadowsky, 1930). It is possible to go beyond this approximation
(Wunderlich, 1962), as required when the curvature becomes large at localized spots along one of the edges (Starostin
and van der Heijden, 2007) —wewill refer to this model as a strip of finite width. An even more general model, applicable to
strips of finite width and non-zero geodesic curvature, has been recently derived in Dias et al. (2012).

We return to our small width approximation: the bending energy of the inextensible plate Ep can be integrated along the
transverse direction, which yields

Ep ¼
Z

w D
2

ðð1�νÞ trðk 2Þþν tr2 k Þ ds;

where D¼ Eh3=ð12ð1�ν2ÞÞÞ is the bending modulus of the plate, E its Young's modulus, ν its Poisson's ratio and h its
thickness. For a 2�2 matrix, the following identity holds: tr2 k ¼ trðk2Þþ2 detk . Dropping the determinant using the
inextensibility condition (5), one can rewrite the elastic energy as

Ep ¼
Z

B
2
k : k ds; ð7Þ

where B¼wD is a rod-type bending modulus, and the double contraction operator is defined by a : b ¼ trða � b Þ ¼∑ijaij bji. Note
that when k11 is eliminated using the constraint (5), the elastic energy Ep coincides with that derived by Sadowsky (1930):

Ep ¼
B
2

Z
ðk233þk211þ2k213Þ ds¼

B
2

Z
ω2

1þ2ω2
3þ

ω4
3

ω2
1

 !
ds ð8Þ

2.3. Constitutive law

We derive the equivalent rod model for our thin strip simply by viewing the energy Ep in Eq. (8) as the energy of a thin
rod. The equivalent thin rod has one internal degree of freedom k11 and is subjected to two kinematical constraints
Cdðω1;ω3; k11Þ and Cgðω2Þ. In Appendix A, we derive the equations for a rod of this type. The condition of equilibrium of the
internal variable reads

� δEp
δk11

þBλd
∂Cd
∂k11

þBλg
∂Cg
∂k11

¼ 0; ð9aÞ

and the constitutive law as

m ¼ ∑
3

i ¼ 1

δEp
δωi

�Bλd
∂Cd
∂ωi

�Bλg
∂Cg
∂ωi

� �
di: ð9bÞ

Here, δEp=δωi and δEp=δk11 denote the functional derivative of the elastic energy Ep with respect to the local strain ωiðsÞ and
internal variable k11ðsÞ, respectively. These equations were obtained by extending Eqs. (A.2a) and (A.2b) of the appendix to
the case of two constraints, and by identifying the internal degree of freedom k¼ k11 and the energy Eel ¼ Ep. Each one of the
Lagrange multipliers λd and λg is associated with one constraint. For convenience, they have been re-scaled with the
bending modulus B, i.e. the quantity λ in the appendix is replaced with Bλd and Bλg.

Eq. (9a) can be interpreted as the cancellation of the total generalized force acting on the internal variable, which is the
sum of the standard force in the first term, and of constraint forces (Lanczos, 1970) in the last two terms. Similarly, the
constitutive law in Eq. (9b) is made up of the usual contribution in rod theory, whereby the internal moment is the gradient
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of the elastic energy with respect to the twist and curvature strains, plus two other terms which are known as (generalized)
constraint forces.

Using the explicit form of the energy Ep and of the constraints Cd and Cg, Eq. (9a) yields
k11 ¼ λdω1: ð10Þ

This equation will be used to eliminate the internal variable k11 whenever it appears. In particular, the developability
constraint in Eq. (5) takes the form

~Cdðω; λdÞ ¼ 0; where ~Cdðω; λdÞ ¼ ðω1Þ2λdþðω3Þ2: ð11Þ
The second Eq. (9b) yields

m ¼ Bðω1d1þ2ω3d3Þ�Bðλdðk11d1þ2ω3d3Þ�λgd2Þ:
Eliminating k11 and projecting onto the material basis, we find the expressions of the twisting and bending moments
mi ¼m � di:

m1 ¼ Bð1�λ2dÞω1 ð12aÞ

m2 ¼ Bλg ð12bÞ

m3 ¼ 2Bð1�λdÞω3: ð12cÞ
This is the constitutive law for a narrow elastic developable strip.

2.4. Remarks

The expression of the constraints in Eqs. (6) and (11) and the constitutive law (12) are the main results of of Section 2.
They translate the inextensible strip model into the language of Kirchhoff's rods. Even though the strip is linearly elastic, its
constitutive law is effectively non-linear because of the developability constraint.

We found that the strip satisfies the same equilibrium equations as an Euler-Bernoulli (inextensible, unshearable) rod.
This is just a coincidence: the cross-sections of the strip are allowed to bend, as sketched in Fig. 2(b), in order to preserve
developabitility when the centerline is both twisted and bent, i.e. when both ω1 and ω3 are non-zero.

The strong formulation of the equilibrium of elastic rods is known as the Kirchhoff equations (see, e.g., Audoly and
Pomeau, 2010). It can be derived by integration by parts from the principle of virtual work, as explained in Appendix A:

n′ðsÞþpðsÞ ¼ 0 ð13aÞ

m′ðsÞþr ′ðsÞ � nðsÞþqðsÞ ¼ 0: ð13bÞ

Here, n is the Lagrange multiplier associated with the inextensibility and Euler–Bernoulli constraints, which can be
interpreted as the internal force. Given a distribution of external force pðsÞ and moment qðsÞ, one can find the equilibria of
the strip by solving the kinematical equations (1)–(3), the constraints (6) and (11), the constitutive law (12) and the
equilibrium (13) for the unknowns rðsÞ, diðsÞ, ωiðsÞ, λdðsÞ and λgðsÞ.

3. An equivalent rod model for the bistrip

We now consider the case of an elastic strip having a central fold, as shown in Fig. 4. The central fold is represented by an
elastic hinge. The flaps on both sides of the fold are described by the mechanical model derived in Section 2. We call bistrip
this composite object, made up of the two flaps and the central fold. In this section, we derive an equivalent rod model for
the bistrip, which takes into account both the bending stiffness of the inextensible flaps, and the stiffness of the
central ridge.

3.1. Kinematics

The planar configuration of the bistrip is show in Fig. 3: in this configuration, the curvature of the central fold coincides with the
geodesic curvature κg. The outer and inner flaps, on each side of the central fold, are labelled by (þ) and (�), respectively.
Fig. 3. A strip with a central fold in its planar configuration, which we call a bistrip. The outer and inner flaps are labelled by (þ) and (�), respectively.
In this planar configuration, the curvature of the fold coincides with the geodesic curvature κg.
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Fig. 4. (a) A 3d configuration of the bistrip. The flaps (þ) and (�) on both sides of the ridge are developable surface. Material frames d ð7 Þ
i are attached to

them. (b) The equivalent rod model makes use of the common ridge as the centerline, R ¼ r , and of the bisecting frame D
μ
as the material frame; the ridge

angle β is viewed as an internal degree of freedom. Note that the conserved geodesic curvature κg is measured along the tangent plane to the flaps, while
the curvature strain ΩII of the centerline is measured in the plane spanned by DI and DIII . By Eq. (41b), ΩIIZκg, and the ratio of these curvatures sets the
ridge angle β.
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A typical 3d configuration of the bistrip is shown in Fig. 4. To apply the analysis of Section 2 to each of these flaps, we
attach a material frame dðϵÞ

i , with i¼1, 2, 3 and ϵ¼ 7 to them. Let us denote by RðsÞ the common ridge, and s the arc-length
along this ridge. We use this ridge as the centerline for both flaps: in the notations of the previous section,
r ðþ ÞðsÞ ¼ r ð�ÞðsÞ ¼ RðsÞ.

We observe that the tangent material vectors dð7 Þ
3 to both flaps are identical, since they share the same centerline: by

Eq. (1), dðþ Þ
3 ðsÞ ¼ r ðþ Þ′ðsÞ ¼ R′ðsÞ ¼ r ð�Þ′ðsÞ ¼ dð�Þ

3 ðsÞ. This allows us to define the bisecting frame DμðsÞ, with μ¼ I; II; III as
follows. Let us first define DIIIðsÞ to be the unit tangent to the ridge,

R′ðsÞ ¼DIIIðsÞ; ð14�Þ

which coincides with the other tangents, DIIIðsÞ ¼ dðþ Þ
3 ðsÞ ¼ dð�Þ

3 ðsÞ. The vector DIðsÞ is defined as the unit vector that bisects
the directions spanned by dðþ Þ

1 ðsÞ and dð�Þ
1 ðsÞ, as shown in the insets of Fig. 4. Similarly, the vector DIIðsÞ is the unit vector that

bisects the directions spanned by dðþ Þ
2 ðsÞ and dð�Þ

2 ðsÞ. By construction, the bisecting frame is an orthonormal frame,

DμðsÞ � DνðsÞ ¼ δμν; ð15Þ

for any pair of indices, μ;ν¼ I; II; III. As a result, the gradient of rotation of the bisecting frame Dμ can be measured by a
Darboux vector Ω such that

D′
μðsÞ ¼ΩðsÞ � DμðsÞ: ð16�Þ

The star symbols in equation labels, as in Eqs. (14) and (16), will be used to mark any equation that defines the equivalent
rod model.

Let us denote by β half of the bending angle of the ridge, see the inset of Fig. 4(a). This angle can be defined as a signed
quantity if we use the orientation provided by the tangent DIII ¼ R′: by convention β is positive in the figure. In terms of the
parameter β, the dihedral angle at the ridge writes π�2β.

The local material frames dðϵÞ
i (i¼1, 2, 3 and ϵ¼ 7) can be reconstructed in terms of the bisecting frame and of the angle

β as follows:

dðϵÞ
1 ðsÞ ¼DIðsÞ cos βðsÞþϵDIIðsÞ sin βðsÞ ð17aÞ

dðϵÞ
2 ðsÞ ¼�ϵDIsðsÞ sin βðsÞþDIIðsÞ cos βðsÞ ð17bÞ

dðϵÞ
3 ðsÞ ¼DIIIðsÞ: ð17cÞ

By this equation, the entire bistrip can be reconstructed in terms of R, Dμ and β. Therefore, we use the ridge R, the bisecting
frame Dμ and the ridge angle β as the main unknowns. We shall show that the bistrip is equivalent to a rod having a centerline
RðsÞ and a material frame DμðsÞ. The kinematic equation (14*) shows that this equivalent rod is effectively an inextensible,
Navier–Bernoulli rod — we emphasize that the cross-sections are not assumed to be rigid, however, as already discussed in
Section 2. In the rest of this section we derive the constitutive law that captures the elasticity of the flaps and of the ridge.
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3.2. Reconstruction of local strains

By differentiating Eq. (17) with respect to arc-length s, and identifying the result with Eq. (3) defining the local strains
ωðϵÞ in each flap, ϵ¼ 7 , we obtain the following expression of the local strains:

ωðϵÞðsÞ ¼ΩðsÞþϵβ′ðsÞDIIIðsÞ: ð18Þ

Note that the second term is associated with the ‘internal’ ridge angle β.
To use the constitutive laws for a single strip derived earlier, we shall need the components of ωðϵÞ in the local material

frame, which we denote by ωðϵÞ
i ¼ωðϵÞ � dðϵÞ

i . Projecting the previous equation, we find

ωðϵÞ
1 ðsÞ ¼ΩIðsÞ cos βðsÞþϵΩIIðsÞ sin βðsÞ ð19aÞ

ωðϵÞ
2 ðsÞ ¼�ϵΩIðsÞ sin βðsÞþΩIIðsÞ cos βðsÞ ð19bÞ

ωðϵÞ
3 ðsÞ ¼ΩIIIðsÞþϵβ′ðsÞ: ð19cÞ

In the right-hand side, we denote by Ωμ ¼Ω � Dμ the projections of the strain vector Ω of the equivalent rod in its own
material (bisecting) frame Dμ, with μ¼ I; II; III.

3.3. Ridge: internal stress, constitutive law

Let us denote by pðsÞ and qðsÞ the force and moment applied across the ridge, per unit arc-length ds, by the inner region
(�) onto the outer region (þ). The outer flap feels a force pðþ ÞðsÞ ¼ þpðsÞ and moment qðþ ÞðsÞ ¼ þqðsÞ. By the principle of
action-reaction, the inner flap feels the opposite force and moment, pð�ÞðsÞ ¼�pðsÞ and moment qð�ÞðsÞ ¼�qðsÞ. We write
this in compact form as

pðϵÞðsÞ ¼�ϵpðsÞ; ð20Þ

qðϵÞðsÞ ¼�ϵqðsÞ; ð21Þ

for ϵ¼ 7 .
We model the central fold as an elastic hinge. The twisting moment qðsÞ � R′ðsÞ is therefore assumed to be a function of

the angle β:

qðsÞ � R′ðsÞ ¼Q rð2βÞ; ð22Þ

where Q r is the constitutive law of the ridge. By convention, the argument of Q r is the turning angle 2β at the ridge, and not
β. This is motivated by the fact that the work done by the ridge is ð2δβÞQ rð2βÞ when the parameter β is incremented by δβ.

Assuming that the constitutive law of the ridge is linear, we write

Q rð2βÞ ¼ Kr � ð2β�2βnÞ; ð23Þ
where Kr is the stiffness of the ridge, and βn the natural value of the angle β. By creasing the strip, one induces irreversible
deformations at the ridge: this is modeled by changing the value of βn.

3.4. Equations of equilibrium

Eq. (13a) expresses the balance of force in each flap. With our current notations, it can be rewritten as nðϵÞ′ðsÞþpðϵÞðsÞ ¼ 0,
where ϵ¼ 7 labels the flaps and nðϵÞ denotes the internal force in each flap. We define the total internal force NðsÞ in the
bistrip,

NðsÞ ¼ nðþ ÞðsÞþnð�ÞðsÞ: ð24Þ

By summing the local balance of forces and using the definition of pðϵÞ in Eq. (20), we find that the bistrip satisfies the global
balance of forces

N ′ðsÞ ¼ 0: ð25�Þ

External force applied on the bistrip could be considered by adding a term in the right-hand side, as in the classical theory
of rods.

Let us now turn to the balance of moments, which can be written in each flap as in Eq. (13b). Recalling that the two flaps
share the same tangent r ′¼ R′¼DIII , we have mðϵÞ′þDIII � nðϵÞ þqðϵÞ ¼ 0. In terms of the total moment MðsÞ in the bistrip,
defined by

MðsÞ ¼mðþ ÞðsÞþmð�ÞðsÞ; ð26Þ
Please cite this article as: Dias, M.A., Audoly, B., A non-linear rod model for folded elastic strips. J. Mech. Phys. Solids
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we write the global balance of moment in the bistrip as

M ′ðsÞþR′ðsÞ � NðsÞ ¼ 0: ð27�Þ
In Eqs. (25) and (27), we have recovered the classical Kirchhoff equation for the equilibrium of thin rods: these equations

express the global balance of forces and moments in the bistrip.
The global balance of moments (27n) does not involve the internal twisting moment due to the ridge, Q r. A second

equation for the balance of moments at the ridge can be derived by projecting the local balance of moments in each strip
onto the shared tangent: mðϵÞ′ � R′þqðϵÞ � R′¼ 0. Subtracting the equations corresponding to ϵ¼ þ and ϵ¼�, and expressing
qð7 Þ in terms of Q r using Eqs. (21) and (22), we have

Δ′ðsÞ � DIIIðsÞ�Q rð2βðsÞÞ ¼ 0; ð28Þ
where Δ is half the difference of the internal moments:

ΔðsÞ ¼mðþ ÞðsÞ�mð�ÞðsÞ
2

: ð29Þ

The balance of moments in Eq. (28) depends on the ridge moment Qr , and can be viewed as the equation that sets the
internal degree of freedom β.

3.5. Kinematic constraints applicable to the equivalent rod

Two kinematic constraints are applicable in each flap ϵ¼ 7: the geodesic constraint CðϵÞg ¼ 0 and the developability
constraint CðϵÞd ¼ 0, see Eqs. (5) and (6). Below, we express these constraints in terms of the centerline R, of the bisecting
frame Dμ, and of the ridge angle β. This yields kinematic constraints that are applicable to the equivalent rod.

Let us start by the geodesic constraint in Eq. (6). The geodesic curvature κg has been interpreted in Fig. 3, and is identical
in both flaps: ωðþ Þ

2 ðsÞ ¼ωð�Þ
2 ðsÞ ¼ κg. In particular, the average of the local curvature reads 1

2ðω
ð�Þ
2 ðsÞþωðþ Þ

2 ðsÞÞ ¼ κg. Using Eq.
(19b), we can rewrite the left-hand side in terms of the strain Ω of the equivalent rod:

ΩIIðsÞ cos βðsÞ ¼ κg: ð30�Þ
By this kinematic constraint, the internal degree of freedom β appears to be a function of the curvature strain ΩII . We could
eliminate β in favor of ΩII using this equation. We shall instead view β and ΩII as two degrees of freedom subjected to the
constraint (30*): this makes the final equations easier to interpret.

A second constraint follows from the equality ωðþ Þ
2 ðsÞ ¼ωð�Þ

2 ðsÞ: when expressed in terms of Ω as above, it reads
ΩI sin β¼ 0. We shall ignore the special case β¼ 0: as explained in Section 4.2, the bistrip is then on the boundary of the
space of configurations and the equations of equilibrium are inapplicable anyway. Under the assumption βa0, we have

ΩIðsÞ ¼ 0: ð31�Þ
In view of the two constraints just derived, we can simplify the expressions of the local strains given earlier in Eqs. (19a)

and (19c):

ωðϵÞ
1 ðsÞ ¼ ϵΩIIðsÞ sin βðsÞ ð32aÞ

ωðϵÞ
3 ðsÞ ¼ΩIIIðsÞþϵβ′ðsÞ: ð32bÞ

The developability constraint in Eq. (11) can be simplified as well:

s2ðsÞλðϵÞd ðsÞþðΩIIIðsÞþϵβ′ðsÞÞ2 ¼ 0; ð33Þ
where we have introduced an auxiliary variable sðsÞ ¼ ϵωðϵÞ

1 ðsÞ which is given in terms of Ω by

sðsÞ ¼ΩIIðsÞ sin βðsÞ: ð34�Þ
We note that the first term in Eq. (28) expressing the balance of moments at the ridge can be written in coordinates as

Δ′ � DIII ¼ ðΔ � DIIIÞ′�Δ � D′
III ¼Δ′

III�Δ � ðΩ � DIIIÞ, where Ω � DIII ¼ΩIIDI by the constraint in Eq. (31*). Here, we denote by
Δμ ¼Δ � Dμ and Ωμ ¼Ω � Dμ the components of the differential internal moment Δ and of the twist-curvature strain Ω in

the bisecting frame. We can therefore rewrite the equilibrium of the ridge as

Δ′
IIIðsÞ�ΔIðsÞΩIIðsÞ�Q rð2βðsÞÞ ¼ 0: ð35�Þ

3.6. Constitutive law

To obtain a complete set of equations for the bistrip, we need the expressions of the total internal moment M and of the
differential internal moment Δ appearing in the equations of equilibrium. We derive the constitutive laws of the bistrip
below, by combining the local constitutive law in each flap, and expressing them in terms of the twist-curvature strainΩ of
the effective rod.
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Let us denote the average over the two flaps ϵ¼ 7 by angular brackets: 〈f ðϵÞ〉ϵ ¼ 1
2ðf�þ f þ Þ. In terms of the Lagrange

multipliers λðϵÞd associated with the developability constraint in each flap, we define the following quantities:

bþ
1 ðsÞ ¼ 〈1�ðλðϵÞd ðsÞÞ2〉ϵ ð36aÞ

b�1 ðsÞ ¼ 〈ϵð1�ðλðϵÞd ðsÞÞ2Þ〉ϵ ð36bÞ

bþ
3 ðsÞ ¼ 〈1�λðϵÞd ðsÞ〉ϵ ð36cÞ

b�3 ðsÞ ¼ 〈ϵð1�λðϵÞd ðsÞÞ〉ϵ: ð36dÞ

Inserting the expression for λðϵÞd found in Eq. (33), we find explicit expressions for the auxiliary variables b7
k :

bþ
1 ðβ;β′;ΩII ;ΩIIIÞ ¼ 1� 1

s4ðΩII ;βÞ
ðΩ4

IIIþ6Ω2
IIIβ

′2þβ′4Þ ð37a�Þ

b�1 ðβ;β′;ΩII ;ΩIIIÞ ¼� 4
s4ðΩII ;βÞ

ðΩ3
IIIβ′þΩIIIβ

′3Þ ð37b�Þ

bþ
3 ðβ;β′;ΩII ;ΩIIIÞ ¼ 1þ 1

s2ðΩII ;βÞ
ðΩ2

IIIþβ′2Þ ð37c�Þ

b�3 ðβ;β′;ΩII ;ΩIIIÞ ¼
2

s2ðΩII ;βÞ
ΩIIIβ′: ð37d�Þ

The Lagrange multipliers λðϵÞg associated with the geodesic constraints are eliminated in favor of their average
Λþ ðsÞ ¼ 〈λðϵÞg ðsÞ〉ϵ and half-difference Λ�ðsÞ ¼ 〈ϵλðϵÞg ðsÞ〉ϵ: for ϵ¼ 7 , they can be reconstructed by

λðϵÞg ðsÞ ¼Λþ ðsÞþϵΛ�ðsÞ: ð38Þ

We view Λþ ðsÞ and Λ�ðsÞ as quantities attached to the equivalent rod: they are the Lagrange multipliers associated to the
two kinematic constraints (30) and (31).

Let us now consider the local constitutive law in Eq. (12), which provides the expression of the internal moment mðϵÞ in
each flap as a function of λðϵÞd , λðϵÞg and ωðϵÞ

2 . These quantities can be expressed in terms of the properties of the equivalent rod,
using Eqs. (36), (38) and (6), respectively. This yields

mðϵÞ ¼ Bððbþ
1 þϵb�1 ÞωðϵÞ

1 dðϵÞ
1 þðΛþ þϵΛ�ÞdðϵÞ

2 þ2ðbþ
3 þϵb�3 ÞωðϵÞ

3 dðϵÞ
3 Þ:

Inserting the expressions of the local strains ωðϵÞ
1 and ωðϵÞ

3 and of the local frame dðϵÞ
i in Eqs. (32) and (17), we obtain the

following expressions of the internal moments M and Δ defined in Eqs. (26) and (29):

ð39�Þ

This equation is the main result of Section 3, and one of the main results of our paper. It yields the constitutive law of the
rod that is equivalent to the bistrip, and captures the details of how the strip deforms at the ‘microscopic’ scale w. The
constitutive law is geometrically exact and handles large deformations of the cross-section: the inextensibility of the strip is
treated exactly, the cross-sections of the flaps may bend significantly, and the angle β can change by a finite amount. The
constitutive law is non-linear because of the geometry: the coefficients b7

i ðβ;β′;ΩII ;ΩIIIÞ in the matrix above depend non-
linearly on the strains through Eq. (37). By contrast, the underlying plate model makes use of a linear constitutive law: the
bending energy of the plate is quadratic with respect to the strain, see Eq. (7).

This constitutive law (39n) depends on the bending strain ΩII — recall that the other bending mode ΩI is frozen by
Eq. (31n) — and on the twisting strainΩIII , as usual. It also depends on the internal degree of freedom β and on its derivative
β′, and on the Lagrange multipliers Λþ and Λ� associated with the two applicable constraints.

The expression of ΔII has been omitted in the constitutive law (39*), as it does not appear in the equations of
equilibrium: it is absent from Eq. (35n) expressing the balance of moments at the ridge. For reference, its expression is
ΔIIðsÞ ¼ sin 2 βðsÞb�1 ðβðsÞ;ΩIIðsÞ;ΩIIIðsÞ;β′ðsÞÞΩIIðsÞþ cos βðsÞ Λ�ðsÞ.
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3.7. Summary: effective rod model for a bistrip

We recapitulate the equations that govern the bistrip, collecting them by family: these are all the equations that we have
marked by a star symbol so far.
�

P
(2
The main unknowns of the model are (i) the centerline RðsÞ and a direct orthonormal frame ðDμðsÞÞμ ¼ 1;2;3, as usual in rod
theory; and (ii) an ‘internal’ degree of freedom, namely the ridge angle βðsÞ.
�
 The kinematic equation defining the strain Ω reads

D′
μðsÞ ¼ΩðsÞ � DμðsÞ: ð40Þ

This is the standard definition of the twist-curvature strain vector for rods.

�
 The following kinematic constraints are applicable:

R′ðsÞ ¼DIIIðsÞ; ð41aÞ

ΩIIðsÞ cos βðsÞ ¼ κg; ð41bÞ

ΩIðsÞ ¼ 0: ð41cÞ
Eq. (41a) defines the classical inextensible Euler–Bernoulli rod model: s being a Lagrangian variable, jR′ðsÞj ¼ jDIIIðsÞj ¼ 1
implies inextensibility and R′ � Dμ ¼DIII � Dμ ¼ 0 for μ¼ I; II implies the absence of normal shear. The two kinematic
constraints (41b) and (41c) are specific to the bistrip.
�
 The equations of equilibrium read

N ′ðsÞ ¼ 0 ð42aÞ

M ′ðsÞþR′ðsÞ � NðsÞ ¼ 0 ð42bÞ

Δ′
IIIðsÞ�ΔIðsÞΩIIðsÞ�Q rð2βðsÞÞ ¼ 0 ð42cÞ

Eqs. (42a) and (42b) are the classical Kirchhoff equations for rods. The additional Eq. (42c) expresses the balance of
moments at the ridge, and sets the equilibrium value of the internal degree of freedom β.
�
 Finally, the constitutive law reads

ð43Þ

where the secondary variables b7
k ðβ;β′;ΩII ;ΩIIIÞ, with k¼1,3, were defined in Eq. (37).

3.8. Simplified constitutive law for nearly circular configurations

A much simpler version of the constitutive law can be derived, which is applicable to near circular geometries. We
assume that the ridge angle and the twist can be expanded as

ΩIIIðsÞ ¼ 0þΩ1
IIIðsÞþ⋯ ð44aÞ

βðsÞ ¼ β0þβ1ðsÞþ⋯ ð44bÞ
Here, β0 is a constant, to be specified later, and β1ðsÞ and Ω1

IIIðsÞ are assumed to be small. Until the end of this section, we
retain the linear terms β1ðsÞ and Ω1

IIIðsÞ, but neglect higher-order terms.
Later on, we shall show that the expansions in Eq. (44) are applicable to the analysis of circular configurations of the

bistrip, and of their stability.
When inserting the expansions in to Eq. (37), we find

bþ
1 ¼ 1; bþ

3 ¼ 1; b�1 ¼ 0; b�3 ¼ 0;

up to second-order terms: almost all the highly non-linear terms disappear from the constitutive law — a few of them are
still present as we do not assume the angle β0 to be small.

To linear order, the constitutive law for ΔI reads

ΔIðsÞ ¼ B sin βðsÞðΩIIðsÞ cos βðsÞ�Λþ ðsÞÞ ¼ B sin βðsÞðκg�Λþ ðsÞÞ
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after using the geodesic constraint in Eq. (41b). Inserting the constitutive law ΔIIIðsÞ ¼ 2Bβ′
1ðsÞ into the balance of moments at

the ridge in Eq. (42c), inserting the above expression of ΔIðsÞ into the resulting expression, and solving for Λþ ðsÞ, we find

Λþ ðsÞ ¼ κgþ
1
B
Q rð2βðsÞÞ�2β″ðsÞ
ΩIIðsÞ sin βðsÞ : ð45Þ

Inserting this expression into the constitutive law (43) for M , and retaining terms up to the linear order, we find

MIðsÞ ¼ΛIðsÞ ð46aÞ

MIIðsÞ ¼Mnc
II ðΩIIðsÞ;βðsÞ;β″ðsÞÞ ð46bÞ

MIIIðsÞ ¼ 4BΩIIIðsÞ: ð46cÞ
Here, Mnc

II denotes the constitutive law in bending, in the nearly circular case:

Mnc
II ðΩII ;β;β″Þ ¼ 2BΩIIþ

2B
ΩII tan β

1
B
Q rð2βÞ�2β″

� �
: ð46dÞ

In Eq. (46a), we have denoted by ΛIðsÞ ¼�2B sin βðsÞ Λ�ðsÞ the right-hand side. This ΛIðsÞ is viewed as the Lagrange
multiplier associated with the constraint ΩI ¼ 0, and is used in replacement of the other unknown Λ�. Note that β in Eq.
(46b) as a function ofΩII through the constraint (41b): because of the presence of the factor β″, MII depends on the first and
second derivatives of ΩII as well, and the constitutive law is of the second-gradient type.

The constitutive law (46) is considerably simpler than the fully non-linear one in Eq. (43). It incorporates the equilibrium
of the ridge: there is no need to use Eq. (42c) when we use the above constitutive law. This effective rod model resembles a
classical rod model: the twist mode is governed by a classical linear constitutive law, MIII ¼ 4BΩIII; the internal degree of
freedom β is a function of the bending strainΩII by the constraint (41b); the constitutive law in bending is non-linear and of
second-gradient type, see Eq. (46d); the curvature ΩI ¼ 0 is frozen and the corresponding bending moment MI ¼ΛI is a
Lagrange multiplier.

As we shall show, this simple constitutive is applicable to the analysis of the circular solutions in Section 4, and to their
stability in Section 5. To compute the post-buckled solution in Section 7, however, we shall revert to the fully non-linear
constitutive law of the previous section.

4. Circular solutions

The rest of the paper is concerned with the analysis of the equilibria of a bistrip closed into a loop, see Fig. 1. This problem
has been considered recently in Dias et al. (2012): the authors have shown that the planar configuration of the bistrip is
non-planar as it buckles into a 3d shape. They observed that for very small widths (κgw51) the dihedral angle is unaffected
by this buckling instability, and remains uniform and constant in the post-buckled regime. Revisiting this problem, we show
that (i) it is a variant of the classical buckling analysis of an elastic ring, (ii) a simple expression for the buckling threshold
can be derived, (iii) the conservation of the dihedral angle in the post-buckled regime can be explained based on symmetry
considerations, and (iv) the closed bistrip can exhibit another, novel type of buckling instability.

4.1. Preparation of the circular configuration

We start by explaining in this section how the initial, circular state of the bistrip is prepared. The procedure is sketched in
Fig. 5, and we invite the reader to perform the following experiments himself or herself:
�

P
(2
An annular region of size 2w and mean radius ρ is cut out in a piece of paper. This sets the value of the geodesic curvature to

κg ¼
1
ρ
: ð47Þ
�
 Next, a sector of angle γ is removed, see Fig. 5(a). The ridge is formed by creasing along the central circle, as shown in
Fig. 5(b). This amounts to reset the value of the natural ridge angle βn appearing in the constitutive law (23) to a non-
zero value. As a result of this, the ridge angle takes on a value β¼ β† which is set by the competition of the ridge energy
(which is minimum when β¼βn) and of the bending energy of the flaps (which is minimum when β¼ 0Þ.
�
 Finally, the free ends are glued together, as shown in Fig. 5(c). The arc-length of the ridge is L¼ ð2π�γÞρ, and so the
radius of curvature is

r0 ¼
L
2π

¼ 1� γ
2π

� �
ρ: ð48Þ

We analyze the circular configuration using the notations in Fig. 6: the z-axis is normal to the circular ridge, and the
origin of coordinates is at its center. We use the polar coordinates ðr;φÞ in the plane (x,y) containing the ridge, and denote
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Fig. 6. Geometry of a circular configuration.

b1

b2

Fig. 5. The circular bistrip is prepared by the following steps: (a) an annular region is cut out in a flat piece of paper, and a sector of angle γ is removed
from it. (b) The ridge is creased: in the equations, this amounts to set the natural ridge angle βn to a non-zero value. As a result, the ridge angle β has a non-
zero equilibrium value β† and the curvature of the centerline increases. Depending on the value of γ, this can leads to an overlap (b1), or to a residual gap
(b2). (c) The bistrip is closed up by bringing the endpoints together. Note that the circular configuration may be unstable, as studied later.
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the polar basis by erðφÞ ¼ cos φexþ sin φey and eφðφÞ ¼� sin φexþ cos φey. Then, the centerline reads

R0ðsÞ ¼ r0er
s
r0

� �
; ð49Þ

and the material frame

D0
I ðsÞ ¼ �er

s
r0

� �
; D0

IIðsÞ ¼ ez ; D0
IIIðsÞ ¼ eφ

s
r0

� �
: ð50Þ

By the definition of the twist-curvature strain Ω in Eq. (16*), we have

Ω0 ¼Ω0
IIez; where Ω0

II ¼
1
r0
: ð51Þ

This is compatible with the constraint Ω0
I ¼Ω0 � D0

I ¼ 0. The twist is also zero, Ω0
III ¼ 0. The ridge angle β0 can be found by

Eq. (30*) and it is uniform:

β0 ¼ cos�1 κg
Ω0

II

 !
¼ cos �1 1� γ

2π

� �
: ð52Þ

Note that we can orient the z-axis so that it points in the same direction as the ridge, as in Fig. 5 where both the axis and the
ridge point upwards. Then, the angle is in the range

0rβ0o
π
2
: ð53Þ

4.2. Stress in the circular configuration

Since βðsÞ ¼ β0 is constant and ΩIIIðsÞ ¼ 0 cancels, the expansion postulated in Eq. (44) holds, with β1ðsÞ ¼ 0 and
Ω1

IIIðsÞ ¼ 0. Therefore, the simplified constitutive law in Eq. (46) is applicable:

M0
I ðsÞ ¼ΛI

M0
IIðsÞ ¼Mnc

II
1
r0
;β0;0

� �
M0

IIIðsÞ ¼ 0:

We seek a cylindrically symmetric solution, and the Lagrange multiplier ΛI is therefore assumed to be constant.
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By the balance of forces in Eq. (42a), the internal force is constant, N0ðsÞ ¼N0. By the balance of moments in Eq. (42b),
we find that ΛI and N0 both cancel. Therefore, the internal stress in the circular bistrip reads:

N0ðsÞ ¼ 0 ð54aÞ

M0ðsÞ ¼M0
IIez; ð54bÞ

where the internal bending moment reads

M0
II ¼Mnc

II
1
r0
;β0;0

� �
¼ 2B

r0
1þ 1

tan β0

Q0r20
B

� �
: ð55Þ

Here, we have introduced the shorthand notation Q0 for the ridge moment in the circular state:

Q0 ¼ Q rð2β0Þ: ð56Þ
The first contributions to M0

II in Eq. (55) is proportional to B and comes from the elasticity of the flaps. The second term,
proportional to Q0, comes from the elasticity of the ridge.

The sign of the internal bending moment M0
II is crucial for the stability of the ring. It can be positive or negative,

depending on how much the ridge has been creased (term Q0) and how large the ridge angle is (term β0). Following
reference (Mouthuy et al., 2012), the circular solution is said to be undercurved when the internal moment M0

II tends to
increase its curvature, and overcurved in the opposite case:

M0
IIo0 : undercurved

M0
II40 : overcurved

(
ð57Þ

The undercurved case corresponds to Fig. 5(b1): before they are glued together, the ends are overlapping; to close up the
ring, one has to decrease its curvature below its natural value, making the ring wider and flatter: β0oβ†. The overcurved
case corresponds to Fig. 5(b2): before the ends of the ring are glued together, they are separated by a gap: closing up the
ends involves decreasing the curvature below its natural value, making the ring narrower and the ridge angle larger, β04β†.

We note that the stress in Eq. (54) becomes singular when β0 ¼ 0. To avoid this difficulty, we shall assume

β0a0: ð58Þ
The case β0 ¼ 0 is pathological because the circular solution then sits on the boundary of the space of admissible
configuration, not in the interior. Indeed, the ridge curvature ΩII is at its maximum value, κg: this curvature cannot vary to
first order, and as a result of this the projection of the ridge in the xy-plane deforms rigidly. The equations of equilibrium
that we derived are not applicable in this special case. To study the case β0 ¼ 0, we would need to relax constraints and
consider an extensible plate model.

5. Linear stability of the circular solutions

In reference Dias et al. (2012), non-planar configurations of the closed bistrip were observed using a paper model; post-
buckled solutions were also calculated, showing striking similarities with the experimental patterns. A typical picture of a
paper model is reproduced in Fig. 1.

Here, we show that these shapes are produced by a buckling instability affecting the circular solutions of Section 4. Our
model allows us to identify the stress that causes this instability: this is simply the prestress in Eq. (54). The eigenmodes and
the buckling threshold are calculated analytically. The selection of the azimuthal wavenumber (number of bumps) is
explained. A second family mode of buckling is pointed out, and demonstrated experimentally.

5.1. Parameterization of the buckling modes

The buckling modes are parameterized by three functions, fψ̂ IðsÞ; ψ̂ IIðsÞ; ψ̂ IIIðsÞg, which are the components in the
undeformed basis of the infinitesimal rotation vector,

ψ̂ ðsÞ ¼ ∑
III

μ ¼ I
ψ̂ μðsÞD0

μðsÞ; ð59Þ

where hats denote perturbations, i.e. small increments from the circular configuration. The infinitesimal rotation ψ̂ ðsÞ is
used to reconstruct the perturbed material frame by

DμðsÞ ¼D0
μðsÞþψ̂ ðsÞ � D0

μðsÞ: ð60Þ

The perturbed centerline can then be found by integration of the equation R′¼DIII , up to a constant of integration which is
an unimportant rigid-body translation.
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5.2. Infinitesimal perturbation to the twist and curvature

To compute the perturbed strain vector Ω, we take the derivative of Eq. (60) and use Eq. (16*): ΩðsÞ � DμðsÞ ¼
Ω0ðsÞ � ðDμðsÞ�ψ̂ ðsÞ � D0

μðsÞÞþψ̂ ′ðsÞ � D0
μðsÞþψ̂ ðsÞ � ðΩ0ðsÞ � D0

μðsÞÞ. Rearranging the terms and using Jacobi's identity, we
derive the following expression for the perturbation Ω̂ ðsÞ ¼ΩðsÞ�Ω0ðsÞ to the strain vector:

Ω̂ ðsÞ ¼ ψ̂ ′ðsÞ�Ω0ðsÞ � ψ̂ ðsÞ: ð61Þ

This equation expresses the geometric compatibility of the increment of rotation ψ̂ ðsÞ and of strain Ω̂ ðsÞ, and is well-known,
see Chouaïeb (2003) and Audoly and Pomeau (2010, Eq. 3.51) for instance. Its right-hand side can be interpreted as the co-
moving derivative of ψ̂ in the undeformed material frame D0

μ, which shows that

Ω̂ ðsÞ ¼ ∑
III

μ ¼ I
ψ̂ ′

μðsÞD0
μðsÞ: ð62Þ

We denote by Ω̂μðsÞ the first-order perturbation to the strain caused by the perturbation:

Ω̂μðsÞ ¼ΩμðsÞ�Ω0
μðsÞ ¼ΩðsÞ � DμðsÞ�Ω0ðsÞ � D

0
μðsÞ: ð63Þ

Neglecting second-order terms, we can write this variation of a product as Ω̂μ ¼ Ω̂ � D0
μþΩ0 � ðψ̂ � D0

μÞ. The first term is
given by Eq. (62), and we have

Ω̂μðsÞ ¼ ψ̂ ′
μðsÞþΩ0ðsÞ � ðψ̂ ðsÞ � D0

μðsÞÞ: ð64Þ

Inserting the expression of Ω0 into Eq. (51), this yields

Ω̂IðsÞ ¼ ψ̂ ′
IðsÞþ

1
r0
ψ̂ IIIðsÞ ð65aÞ

Ω̂IIðsÞ ¼ ψ̂ ′
IIðsÞ ð65bÞ

Ω̂IIIðsÞ ¼ ψ̂ ′
IIIðsÞ�

1
r0
ψ̂ IðsÞ ð65cÞ

The curvature ΩIðsÞ being frozen by Eq. (41c), its perturbation is zero, Ω̂IðsÞ ¼ 0. The rotation ψ̂ III can then be eliminated
from Eq. (65a):

ψ̂ IIIðsÞ ¼�r0ψ̂
′
IðsÞ: ð66Þ

Inserting into Eq. (65c), we find

Ω̂IIIðsÞ ¼ �1
r0
ðr20ψ̂ I″ðsÞþψ̂ IðsÞÞ: ð67Þ

5.3. Azimuthal wavenumber

Given the cylindrical invariance of the base solution, we seek buckling modes that depend harmonically on the polar
variable φ¼ s=r0 ¼Ω0

IIs. These buckling modes are indexed by an integer wavenumber nZ0,

ðψ̂ IðsÞ; ψ̂ IIðsÞ; ψ̂ IIIðsÞÞ ¼ ðΨ̂ I ; Ψ̂ II ; Ψ̂ IIIÞei n s=r0 : ð68Þ
The coefficients in the parenthesis in the right-hand side are the complex amplitudes of the infinitesimal rotation.

By a classical argument, the cases n¼0 and n¼1, which correspond to rigid-body rotations, are ruled out. Indeed, when
n¼0, Ω̂I ¼ 0 by the constraint, Ω̂II ¼ 0 by Eq. (65b), and Ω̂III is proportional to ψ̂ I by Eq. (67); the condition that the
centerline closes up after one turn requires that the constant value of ψ̂ I is zero. As a result, all the strain components Ωμ

stay unperturbed when n¼0, which corresponds to a rigid-body motion of the bistrip. A similar argument shows that n¼1
corresponds to a rigid-body motion of the bistrip as well. Therefore, we only consider azimuthal wavenumbers n in the
buckling analysis such that

nZ2: ð69Þ

5.4. Linearized equilibrium

Linearizing the balance of forces (42a), we have N̂ ′ðsÞ ¼ 0, and so the perturbation to the internal force is a constant
vector, N̂ ðsÞ ¼ N̂ . We know N0ðsÞ ¼ 0 from Eq. (54a), and therefore the total internal force reads NðsÞ ¼ N̂ to first order in the
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perturbation. Inserting into the balance of moments (42c) and retaining first order terms, we find

M̂ ′ðsÞ ¼�D0
IIIðsÞ � N̂ : ð70Þ

Since we study buckling modes that are pure Fourier modes, the components of the vector M̂ ′ðsÞ in the unperturbed frame
D0
μ all depend on s as expði n s=r0Þ with nZ2. By contrast, the components of the right-hand side ð�D0

IIIðsÞ � N̂ Þ in the
unperturbed frame D0

μ, which can be computed explicitly, have only two non-zero Fourier components, those with
wavevectors 0 and 1. Therefore, we conclude that both sides of Eq. (70) must cancel: M̂ ′ðsÞ ¼ 0. Integrating, we find that M̂ ðsÞ
is a constant. For the components of M̂ ðsÞ in the material frame to be harmonic with nZ2, this constant must in fact be zero:

M̂ ðsÞ ¼ 0: ð71Þ
We have just shown that the buckling modes leave the internal force and moment unperturbed, to first order.

5.5. Linearized constitutive law

In Eq. (63), we have assumed that the bending and twist strain can be expanded as ΩμðsÞ ¼Ω0
μðsÞþΩ̂μðsÞ, with μ¼ II; III.

Using the unperturbed strain Ω0
μðsÞ given earlier in Eq. (51), this yields

ΩIIðsÞ ¼Ω0
IIþΩ̂IIðsÞ ð72aÞ

ΩIIIðsÞ ¼ 0þΩ̂IIIðsÞ: ð72bÞ
Using the geodesic constraint in Eq. (41b), we can derive the expansion for the ridge angle β, from that of ΩII:

βðsÞ ¼ β0þ β̂ðsÞ ð72cÞ
where

β̂ðsÞ ¼ r0
tan β0

Ω̂IIðsÞ: ð72dÞ

Comparison of Eqs. (72b) and (72c) with Eqs. (44a) and (44b) shows that the linear stability analysis involves exactly the
type of expansion that was postulated in Section 3.8, which we dubbed the ‘nearly circular’ case. Therefore, we can use the
simplified constitutive law (46) in the linear stability analysis. Linearizing this constitutive law, we get

M̂II ¼
∂Mnc

II ðΩ0
II ;β0;0Þ

∂ΩII
Ω̂IIþ

∂Mnc
II ðΩ0

II ;β0;0Þ
∂β

β̂þ∂Mnc
II ðΩ0

II ;β0;0Þ
∂β″

β̂″ ð73aÞ

M̂III ¼ 4BΩ̂III ð73bÞ
Note that we have not included the linearized constitutive for M̂I , as we are not interested in reconstructing the Lagrange
multiplier Λ̂ I . The quantities in the left-hand side are the perturbations to the strain components M̂μ ¼M � Dμ�M0 � D

0
μ. The

perturbation to the internal moment M̂ can be written in terms of them as

M̂ ðsÞ ¼MðsÞ�M0ðsÞ ¼ ∑
III

μ ¼ I
ðM̂μðsÞþM0

μÞDμðsÞ�M0
μD

0
μðsÞ ¼ ∑

III

μ ¼ I
M̂μðsÞDμðsÞþ ∑

III

μ ¼ I
M0

μψ ðsÞ � D0
μðsÞ ¼ ∑

III

μ ¼ I
M̂μðsÞD0

μðsÞþψ̂ ðsÞ �M0

ð74Þ
after dropping second-order terms. By the balance of moments in Eq. (71), the left-hand side is zero. Inserting the
expression of M0 in Eq. (54b) in the right-hand side, and projecting onto the directions μ¼ II and μ¼ III, we find

M̂IIðsÞ ¼ 0 ð75aÞ

M̂IIIðsÞþM0
IIψ̂ IðsÞ ¼ 0: ð75bÞ

5.6. Centerline mode

EliminatingMIII from Eqs. (73b) and (75b) and inserting the expression of Ω̂ III obtained by the kinematic Eq. (67), we find
an eigenvalue problem for the periodic function ψ̂ I:

�M0
IIψ̂ IðsÞ
4B

¼�1
r0
ðr20ψ̂ I″ðsÞþψ̂ IðsÞÞ: ð76Þ

Inserting the harmonic dependence on the arc-length s given in Eq. (68), this leads to

M0
IIr0
4B

þðn2�1Þ
 !

Ψ̂ I ¼ 0: ð77Þ
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When the factor in parentheses cancels, non-zero values of the rotation Ψ̂ I are possible. This corresponds to a family of
buckling modes which we call the centerline mode.

In Eq. (77), equating the factor in parenthesis to zero yields the critical value of the bending prestress M0
II where the ridge

mode occurs. The prestress M0
II is always negative when the parenthesis cancels in Eq. (77), since nZ2. Therefore, the

centerline buckling is only possible in the undercurved case.
This prestress is itself a function of the natural ridge angle βn by Eq. (55). Inserting this function, we find an equation for

the critical value of the natural ridge angle βn ¼ βctl
n;critðK r;β0;nÞ where the centerline buckling mode occurs:

K r
2β0�2βctl

n;critðK r;β0;nÞ
tan β0

¼ 1�2n2; nZ2: ð78Þ

This βctl
n;critðK r;β0;nÞ, is a function of the initial ridge angle β0, of the wavenumber n, and of the dimensionless ridge stiffness

K r ¼
r20Kr

B
: ð79Þ

The mode can be reconstructed by picking an infinitesimal value of Ψ̂ I in Eq. (68), and by computing ψ̂ by Eq. (66). The
twisting strain is then given by Eq. (67). On the other hand, the bending strainΩII , which is proportional to ψ̂ II remains zero:
the centerline mode is a pure twist mode. By Eq. (72c), the ridge angle remains unperturbed as well — this is why we call it a
centerline mode. The mode can be visualized by reconstructing the perturbed material frame by Eq. (60), and by integrating
along the tangent to find the deformed centerline. In Fig. 7 the first two centerline modes, n¼2 and 3, are visualized.

In reference Dias et al. (2012), post-buckled configurations of the centerline mode have been observed both in
experiments using paper model and in simulations. Here, we have shown that this mode occurs by an instability very
similar to classical instabilities for elastic rings (Zajac, 1962; Goriely, 2006; Moulton et al., 2013), and have calculated the
buckling threshold analytically. Our equation predicts that n¼2 is the first unstable mode, when the prestress M0

II is made
more and more negative.
5.7. Analysis of the ridge mode

We now proceed to analyze the second family of buckling modes, by using the remaining equations derived in the
beginning of this section. Combining the balance of moments (75a) and the linearized constitutive law (73a), we find a
relation between Ω̂II , β̂ and β̂″:

β̂″¼ Kr�Q0cscð2β0Þ
B

β̂þ 1
2r0

tan β0�
r20Q0

B

� �
Ω̂II : ð80Þ
Fig. 7. The two families of buckling modes for an initially circular configuration: centerline and ridge modes. In each family, the first two modes are shown,
corresponding to the wavenumbers n¼2 and 3. In the shadows obtained by projection onto a normal plane, the centerline appears to be oscillating from
one edge to the other in the centerline mode; by contrast, it stays centered in the ridge mode. Cuts along the dashed line are shown in the framed insets. In
the centerline mode, which occurs in pure twist, the central ridge goes out of plane, the dihedral angle is conserved and the cross-sections swing back and
forth about the centerline. By contrast, the ridge mode involves a modulation of the dihedral angle, and the central ridge stays planar.
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Then, we eliminate β̂ using the linearized geodesic constraint in Eq. (72d) and the kinematic Eq. (65b), and obtain an
eigenvalue problem for the periodic function ψ̂ II:

ψ̂ II‴ðsÞ ¼
1
r20

tan 2ðβ0Þ
2

þK r�
1
2

tan β0þ
1

sin β0 cos β0

� �
ð2β0�2βnÞK r

� �
ψ̂ ′

IIðsÞ: ð81Þ

The harmonic dependence on the arc-length given in Eq. (68) is used again to solve Eq. (81). As earlier, this yields the
equation for the critical value of the natural angle βn at the ridge, which we denote by βridge

n;critðK r;β0;nÞ:

K r
2β0�2βridge

n;critðK r;β0;nÞ
tan β0

¼
K rþn2þ tan 2 β0

2
1
2
þ tan 2 β0

ð82Þ

The left-hand side of this equation is the second term in the right-hand side of Eq. (55). This shows that the residual stress
M0

II is always positive at the onset of bifurcation: the ridge buckling instability occurs in the overcurved case.
The reconstruction of the ridge mode is similar to that of the centerline mode. The ridge mode only involves bendingΩII ,

and the twist remains zero, ΩIII ¼ 0: the ridge mode is a pure bending mode. A consequence of this is that the centerline
remains planar. The first two ridges modes (n¼2 and 3) are shown in Fig. 7. By Eq. (82), the first unstable ridge mode is the
one with n¼2 bumps.

This ridge mode has not been discussed earlier in the literature, to the best of our knowledge.

5.8. Interpretation of the buckling modes by a symmetry argument

We have found two families of buckling modes: the centerline mode, and the ridge mode. Each buckling mode can occur
with an arbitrary azimuthal wavenumber, indexed by an integer nZ2. The centerline modes occur in pure twist: the twist
ΩIII is non-zero, making the central ridge go out of plane, while the unconstrained curvature ΩII remains unchanged,
implying that the ridge angle β remains unperturbed. By contrast, the ridge mode occurs in pure bending: the twist ΩIII

remains zero, making the central ridge remain planar, while the unconstrained curvatureΩII is modulated together with the
ridge angle β.

These features of the buckling modes can be interpreted based on symmetry considerations. In Appendix B, we identify a
symmetry of the equilibrium equations for the bistrip, which leaves the circular base state invariant. The two families of
modes that we have obtained are the eigenvectors of this symmetry. Indeed, the eigenvector corresponding to the
eigenvalue þ1 satisfies ~ΩIII ¼ þΩIII which, in view of Eq. (B.4) in the appendix, implies ΩIII ¼ 0: this is the ridge mode. The
eigenvector corresponding to the eigenvalue �1 satisfies ~ΩII ¼�ΩII , implying ΩII ¼ 0: this is the centerline mode. This
symmetry explains why the eigenvalue problems for the centerline and ridge modes in Eqs. (76) and (81) are uncoupled,
and why the ridge angle β is unaffected by the ridge mode, as observed in the previous work (Dias et al., 2012).

6. Experiments

6.1. Experimental buckling modes

We confront the stability analysis carried out in the previous section to experimental pictures of paper models. An
annular region is cut out in a piece of paper; as explained earlier in Fig. 5, an angular sector of size γ is removed, see (a) in
Fig. 8, which sets the dihedral angle β0 of the circular solution by Eq. (52); the permanent deformations involved in pleating
the ridge in step (b) amount to change the natural value βn of the ridge angle in the constitutive law. The circular
configuration is not observed, as the bistrip buckles. The top row (a1–c1) in Fig. 8 corresponds to the undercurved case: a
buckling mode with n¼2 bumps is observed, as already reported in Dias et al. (2012). The features of the centerline
predicted by the linear stability analysis are confirmed: the deformation involves twist, the centerline becomes non-planar
and the ridge angle remains uniform.

The second row (a2–c2) in Fig. 8 shows the overcurved case, i.e. when γ is large enough and the ends of the strip need to
be pulled to close up the bistrip. The observed buckling mode is similar to the ridge mode predicted by the linear stability
analysis: the dihedral angle clearly varies along the central fold in part (c2) of the figure, and the centerline remains planar.
The observed mode corresponds to an azimuthal wavevector n¼2, as predicted by the theory.

Another buckling mode is observed in the experiments, which could not be anticipated based on the linear stability
analysis. This mode, shown in the bottom row (a3–c3) in Fig. 8 is a non-planar pattern having a non-constant dihedral angle.
A striking feature is that the deformation is localized at two opposite points, where the curvature is quite large. This mode is
obtained for slightly larger values of γ than the ridge mode, i.e. for an even larger overcurvature. This localized pattern is
essentially non-linear, and will be explained later on in Section 7.

In Fig. 9, we show that it is possible to force the bistrip into a higher centerline mode, n¼3. Starting from the natural
buckling mode n¼2, in Fig. 8 (c1), the higher mode can be obtained by squeezing the paper model between two parallel
plates. When released, the shape with n¼3 bumps appears to be stable: it is likely to be a local equilibrium configuration.
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Fig. 8. Observation of the centerline buckling mode (top row) and ridge buckling mode (bottom row) in a paper model. Both modes have n¼2 bumps, as
predicted by the linear stability analysis. The bistrip is prepared as explained in Fig. 5: (a) an annular region is cut out in a piece of paper and a sector of
variable angular size γ is removed from it; (b) the central ridge is pleated, leading to an increase in the curvature of the ridge, hence an overlap of the two
free ends (undercurved case, b1) or a reduction of the gap between them (overcurved case, b2); (c) gluing the free ends together makes the bistrip buckle.
In (b) and (c), the position of the ridge is highlighted by a dashed overlay.

Fig. 9. A higher-order centerline mode, with a wavenumber n¼3, viewed from two angles. This mode is achieved by compressing the natural mode n¼2
between two plates.
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6.2. Measuring the ridge stiffness

Here we show how the dimensionless ridge stiffness K r can be measured experimentally. The value of K r is required to
plot the post-buckled solution in the following section. The experimental set up is depicted in Fig. 10.

We cut out a short segment of the bistrip, with axial length L¼1 cm. The length L and width w¼2 cm are comparable,
and are much larger than the thickness h� 0:2 mm. As sketched in the figure, a pinching force f is applied at the endpoints
of the flaps. By measuring how much the flaps bend in response to this force, versus how much the dihedral changes, one
can find out the value of K r.

To do so, we measured experimentally the values of the dihedral angle θ0 ¼ π=2�β and of the angle ϕ made by the two
endpoints (see figure) for various values of the applied force. We simulated the problem of a 2D Elastica attached to an
elastic hinge numerically. This problem depends only on the dimensionless stiffness K̂ r ¼w2Kr=B. We plotted several
parametric curves f↦ðθ0ðK̂ r; f Þ;ϕðK̂ r; f ÞÞ corresponding to different values of K̂ r. The experimental datapoints were found to
be distributed along one of the simulation curves, and this allowed the parameter K̂ r to be determined. This parameter was
then converted into the original dimensionless stiffness K r defined in Eq. (79) using the formula K r ¼ ðr0=wÞ2K̂ r. For the
bistrips paper models used in the present paper, this yields K r ¼ 155.
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7. Post-buckled solutions

In this section, we investigate the post-buckled configurations of a bistrip numerically, by solving the non-linear
equations using a continuation method. The goal is to provide an example of application of the bistrip model of Section 3 in
a fully non-linear setting, to validate the assumptions and the predictions of the linear stability analysis of Section 5, and to
investigate the nature of the bifurcations. We would also like to explain the localized pattern observed in the experiments,
which the linear stability analysis could not predict.

The continuation method is implemented in two steps: the symbolic calculation language Mathematica (Wolfram
Research, Inc., 2012) is used to transform the equations for the strip in a set of first-order differential equations, and export
the right-hand sides as computer code in the C language; in a second step, this code is used by the continuation software
AUTO-07p (Doedel et al., 2007) to produce the branches of equilibrium.

The unknowns are collected into a state vector X ðsÞ,
X ðsÞ ¼ fRðsÞ;DIIIðsÞ;DIIðsÞ;NðsÞ;βðsÞ;β′ðsÞ;ΩIIIðsÞ;Λþ ðsÞ;Λ�ðsÞg; ð83Þ

whose dimension is N¼17. The numerical continuation method requires that we write the non-linear equations of
equilibrium for the bistrip in the form of N first-order ordinary differential equations,

X ′ðsÞ ¼ΦðX ðsÞÞ; ð84aÞ

together with N boundary conditions,

Γ ðX ð0Þ;X ðLÞÞ ¼ 0: ð84bÞ

Let us now explain how the equilibrium equations for the bistrip are cast in this form, starting with the differential
equation (84a). In terms of X ðsÞ, the following quantities are first reconstructed: DI ¼DII � DIII , ΩII ¼ κg= cos β,

Ω ¼∑III
μ ¼ IIΩμDμ. Then, the derivative of X ðsÞ is calculated as follows: R′¼DIII , D

′
III ¼Ω � DIII , D

′
II ¼Ω � DII , N ′¼ 0; the

derivative of β is directly equated to the following state variable β′; by inserting the full constitutive law (39n) into the global
balance of moments (42b) and the equilibrium equation for the ridge (35*), we obtain four scalar equations, which we solve

symbolically for β″,Ω′
III , Λ

′
þ and Λ′

�. These expressions for fR′;D′
III ;…;Λ′

�g are collected into a vectorΦðX ðsÞÞ of length N¼17,
and the map Φ is implemented numerically in the C language.

The vector of the boundary conditions Γ is constructed as follows. We note that the solution is defined up to a rigid-body
motion, and remove this indeterminacy by the convention Rð0Þ ¼ 0, DIIIð0Þ�ex ¼ 0, DIIð0Þ�ey ¼ 0. We also enforce the

periodicity conditions RðLÞ�Rð0Þ ¼ 0, βðLÞ�βð0Þ ¼ 0, β′ðLÞ�β′ð0Þ ¼ 0, ðDIIIÞyðLÞ�ðDIIIÞyð0Þ ¼ 0, ðDIIIÞzðLÞ�ðDIIIÞzð0Þ ¼ 0, ðDIIÞzðLÞ�
ðDIIÞzð0Þ ¼ 0. This yields a total of N¼17 scalar boundary conditions, which are implemented as a map Γ ðX ð0Þ;X ðLÞÞ in the C
language. It can be checked that these periodicity conditions are necessary and sufficient to warrant the periodicity of all the
physical quantities of the strip, such as Ωμ, DII , Λ7 , etc.

We work in a set of units such that r0 ¼ 1, i.e. the curvilinear length of the ridge is L¼ 2π, and the bending modulus of the
flaps is B¼1. The parameters of the simulation are the natural angle βn of the ridge, the ridge stiffness Kr (which coincides
with the re-scaled one, K r, in this set of units), and the ridge angle β0 in the circular configuration. The geodesic curvature
κg ¼ cos β0 is viewed as a dependent variable (see Eq. (52)). We only consider the fundamental buckling modes, n¼2.

The boundary value problem in Eq. (84) is solved using AUTO-07p. A branch of solutions is produced by starting from the
circular configuration, with a radius r0 ¼ 1 and a ridge angle β0. The natural value of the ridge angle is initialized to βn ¼ β0,
and then used as a continuation parameter: this mimics the act of creasing the central fold further (βn4β0), or flattening it
(βnoβ0). The equilibrium branches are followed as βn is varied. Bifurcation diagrams obtained in this way are shown in
Fig. 11. The parameters β0 and K r were set to the values corresponding to our experiments. In the diagram, we use the
buckling indicators Ic and Ir for the centerline and for the ridge modes, respectively. They are defined by

Ic ¼ 〈Ω2
III〉

1=2; Ir ¼ 〈β′2〉1=2; ð85Þ
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Fig. 11. Non-linear branches of equilibrium obtained by solving the fully non-linear equations of Section 3.7. (a) Results of the numerical continuation
using AUTO for K r ¼ 155 and β0 ¼ 0:535 (typical values of our experiments). On the unbuckled branch (grey), both Ir and Ic cancel; on the ridge branch
(orange), only Ir is non-zero; on the centerline branch (dark blue), only Ic is non-zero. Only the buckled branches with azimuthal wavenumber (n¼2) are
shown. The thick arrows below the βn axis show the critical loads predicted by the linear stability analysis of Section 5. (b) Stylized view of the same
diagram representing the ridge and centerline modes in perpendicular directions, extending the branches to Iro0 and Ico0 by symmetry, stretching the
ridge branch horizontally for better legibility, and showing the stable (solid curves) and unstable (dashed curves) portions of the branches. (c) Plot of the
dihedral angle β as a function of the arclength s for different solutions along the ridge branch: the dihedral angle progressively localizes as one moves
towards the endpoint R2 of the branch. There, the bistrip flattens (β¼ 0) at two opposite points (red asterisks). Beyond this point R2, for negative values of
βn, the ridge branch connects to localized modes (brown curve in part b of the figure). (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)
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where 〈f 〉¼ ð1=LÞ R L0 f ðsÞ ds denotes the average of a function f. These definitions are motivated by our stability analysis: the
centerline mode is a pure twist mode (Ica0 and Ir ¼ 0), while the ridge mode is a pure bending mode (Ic ¼ 0 and Ira0).

A stylized version of the numerical diagram obtained in Fig. 11(a) is shown in Fig. 11(b): in the latter, the ridge branch
(orange curve) has been stretched for better legibility. First, we note that the buckling thresholds predicted by the linear
stability analysis of Section 5 are correct: they are shown by the thick arrows below the βn axis in part (a) of the figure, and
correspond exactly to the values of βn where the centerline and ridge branches meet the unbuckled branch. These buckling

thresholds read, from Eqs. (78) and (82), βridge
n;critðK r;β0;nÞ ¼ 0:177 and βridge

n;critðK c;β0;nÞ ¼ 2:612, with K r ¼ 155, β0 ¼ 0:535 and

n¼2. For reference, the transition from the overcurved to the undercurved case, which can be found by solvingM0
II ¼ 0 for Q0

in Eq. (55) and then for βn in the ridge's constitutive law, occurs at the intermediate value βn ¼ 0:537, as indicated by the
dashed vertical line in the figure (we noted earlier that the centerline mode occurs in the undercurved case and the ridge
mode in the overcurved case). The agreement of the non-linear post-buckling and linear stability analyses on the initial
thresholds confirms the relevance of the simplified constitutive law (Section 3.8) to the linear stability analysis.

Near βctl
n;crit, the centerline branch emerges through a continuous pitchfork bifurcation. The part of the branch that

extends between this initial bifurcation and the limit point C2 is stable, see part (b) of the figure. This branch spans the

interval βctl
n;critrβnrβctl

n;fold, where the value of βn corresponding to the limit point C2 is βctl
n;fold ¼ 6:120. The presence of this
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stable branch is consistent with the experimental observation of saddle-like shapes for large enough undercurvature, as in
the experimental snapshot framed in dark blue in part (a) of the figure. Note that the stability of the equilibria has been
inferred by comparing the elastic energy of the various types of solutions for a given value of βn; a detailed analysis of
stability would be needed to confirm this. Past the limit point C2, the centerline branch is unstable. This unstable branch
ultimately connects with 3-fold circular solutions, see snapshot C6 in the figure. We ignore the self-contact that starts to take
place beyond configuration C4.

Note that for the particular values K r ¼ 155 and β0 ¼ 0:535 used to generate Fig. 11, the stable centerline branch lies

above βctl
n;crit ¼ 2:612. This value is beyond the maximum value βn ¼ π=2 allowed by the non-penetration condition of the

flaps. We conclude that for these specific values of the parameters, the centerline buckling mode cannot be observed. The
experimental snapshots of centerline modes shown in Figs. 11(b) and 8(c1) were indeed obtained for a much lower value of

the angle β0, for which buckling thresholds βctl
n;crit predicted by Eq. (78) are below π=2.

We now examine the ridge branch. As emphasized in part (b) of the figure, this branch is produced by a discontinuous
pitchfork bifurcation: the weakly post-buckled ridge solutions exist for values of βn lying on the same side of the initial

threshold, βn4βridge
n;crit, as the stable unbuckled configuration. This implies that the portion of the ridge branch between the

initial bifurcation threshold βridge
n;crit and the fold point corresponding to the configuration R1, which occurs for

βn ¼ βridge
n;fold ¼ 0:196, is unstable: see dashed curve in part (b) of the figure. Further along the ridge branch, beyond the

fold point R1, it becomes stable. In the interval βridge
n;crit ¼ 0:177oβnoβridge

n;fold ¼ 0:196, both the ridge mode and the unbuckled
solution are stable; this interval has been stretched in Fig. 11(b) to improve legibility, but it is actually quite small. The ridge
mode ceases to exist when βn reaches a numerical value equal to zero within numerical accuracy, which happens slightly
beyond the configuration labelled R2 in the figure. The plot of the ridge angle βðsÞ in Fig. 11(c) shows that the branch ends
when the ridge angle, which progressively concentrates into two narrow peaks, reaches the value β¼ 0 at two opposite
points (asterisks). The solutions that exist past this point cannot be described with our equations, as we explicitly assumed
βa0 to derive Eq. (31n). They can nevertheless be discussed as follows. When the ridge becomes flat, β¼ 0, the bistrip
suddenly acquires another degree of freedom, which involves bending both flaps into a cylindrical shape, with generatrices
locally perpendicular to the fold line. This is exactly what happens in the localized mode observed in the experiments, see
the asterisks in the experimental picture framed in brown in Fig. 11(b). Therefore, we infer that the ridge branch connects to
a branch made of localized solutions in the region βno0, sketched by the brown line in part (b) of the figure. This is
consistent with the experimental fact that planar ridge solutions, which are rarely observed as they exist in a narrow
interval of βn, evolve into non-planar localized solutions when the amount of overcurvature is increased.

Overall, the post-buckling diagram explains the three types of patterns observed in the experiments. The localized
pattern could not be anticipated by the linear stability analysis as it is produced by a secondary bifurcation: along the ridge
branch the dihedral angle β progressively concentrates until it reaches zero at two opposite points, allowing the bistrip to
become suddenly non-planar.
8. Conclusion

We have considered the large deformations of thin elastic strips, whose width w is much smaller than its length L but
much larger than its thickness h: h5w5L. For thin beams having a slender cross-section, h5w, the classical rod theory of
Kirchhoff is known to be inapplicable. Such beams are usually modeled using Vlasov's theory for thin-walled beams.
Vlasov's models can be justified from 3D elasticity but only in the case of moderate deformations, when the cross-sections
bend by a small amount. In the present work, however, we have considered large deformations of thin strips. The strip has
been modeled as an inextensible plate, and the geometric constraint of inextensibility has been treated exactly: the cross-
sections are allowed to bend by a significant amount. Our model extends the classical strip model of Sadowsky, and
reformulates it in a way that fits into the classical theory of rods.

To do this, we have identified the applicable geometrical constraints and constitutive law. The latter is non-linear
because of underlying constraint of developability. The other classical equations for thin rods are applicable (inextensibility
and unshearability constraints, geometric definition of the twist-curvature strain, equations of equilibrium). Unifying the
description of of elastic strips and rods allows the large body of numerical and analytical methods developed for rods, to be
ported to strips: our stability analysis of the bistrip was adapted from the classical stability analyses of elastic rings.

For the purpose of illustration, our model has been applied to a specific geometry: the equilibria of a closed bistrip have
been analyzed. Bifurcated solutions reported in prior work have been interpreted based on a instability affecting the circular
solutions. Two other, novel types of patterns have been demonstrated in experiments. We have identified the residual
bending moment in the circular configuration as the stress driving these instabilities. The sign of this residual stress has
been shown to determine which buckling mode occurs. A symmetry argument has been invoked to explain the main
features of these buckling modes. The selection of the wavenumber of the modes has been accounted for. The non-linear
features of the instability have been explored numerically using a continuation method. In particular, we have identified a
localized mode, that can only be interpreted based on the post-buckling analysis.
Please cite this article as: Dias, M.A., Audoly, B., A non-linear rod model for folded elastic strips. J. Mech. Phys. Solids
(2013), http://dx.doi.org/10.1016/j.jmps.2013.08.012i

http://dx.doi.org/10.1016/j.jmps.2013.08.012
http://dx.doi.org/10.1016/j.jmps.2013.08.012
http://dx.doi.org/10.1016/j.jmps.2013.08.012


M.A. Dias, B. Audoly / J. Mech. Phys. Solids ] (]]]]) ]]]–]]]22
In future work, it would be interesting to extend the present approach to corrugated shells. Such shells are obtained by
folding an elastic plate along a family of folds that are locally parallel to each other. The presence of the folds has a dramatic
influence on the mechanical behavior of the structure: for instance, they can make it behave like a hyperbolic shell, and can
couple to two modes of bending (Norman et al., 2009). These interesting behaviors have awaken a marked interest recently.
So far, the analysis of corrugated shells has been mainly carried out at the geometric level (Demaine et al., 2011; Seffen,
2012) or for specific fold geometries (Dias and Santangelo, 2012; Wei et al., 2012). Generalizing the approach followed in our
paper, it should be possible to account for the presence of the folds through an effective (homogenized) constitutive law.
This would make it possible to bridge the gap between the literature on the mechanics of elastic shells, and the young field
of corrugated shells.
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Appendix A. Constitutive law for an elastic rod with constraints

In this appendix, we derive the general expression of the constitutive law for an elastic rod subjected to a kinematical
constraint, and possessing an internal degree of freedom. It is considered inextensible and the arclength is denoted by s.
A configuration of the rod is parameterized by its centerline rðsÞ, by an orthonormal material frame diðsÞ with i¼1, 2, 3, and
by an internal variable k(s) (in the elastic strip model, this internal variable is the transverse curvature k11). These functions
have to satisfy the Euler–Bernoulli and inextensibility constraints in Eqs. (1) and (2). The Darboux vector ωðsÞ is defined by
Eq. (3), and we denote by ωiðsÞ ¼ωðsÞ � diðsÞ its components in the material frame. We assume that the elastic energy Eel of
the rod is the integral of a density of elastic energy, which is itself a function of the local twist and curvature strains
ðω1;ω2;ω3Þ and of the internal parameter k. In addition to the inextensibility and Euler–Bernoulli constraints, the rod is
subjected to a kinematical constraint which writes CðωiðsÞ; kðsÞÞ ¼ 0.

The rod is subjected to a density of external force pðsÞ and a density of external moment qðsÞ per arc-length ds. Its
equilibrium is governed by the principle of virtual work. The latter states that, for any virtual motion (see for instance
Steigmann and Faulkner, 1993 and Audoly and Pomeau, 2010),

�
Z

∑
3

i ¼ 1

δEel
δωi

δωiþ
δEel
δk

δk

 !
dsþ

Z
λ ∑

3

i ¼ 1

∂C
∂ωi

δωiþ
∂C
∂k
δk

 !
ds⋯þ

Z
n � ðδr ′�δd3Þ dsþ

Z
ðp � δrþq � δθÞ ds¼ 0; ðA:1Þ

where δEel=δωi and δEel=δk denote the functional derivative of the elastic energy Eel with respect to ωiðsÞ and k(s),
respectively. In this equation, virtual (infinitesimal) quantities are prefixed with the letter δ: δr , δd3, δθ , δωi, δk are the
virtual change of centerline, of tangent, the virtual infinitesimal rotation, the virtual increment of twist and curvature, and of
internal parameter, respectively. The first term in Eq. (A.1) is the virtual internal work which represents the elastic stress in
the rod: as usual in the elastic case, it is the opposite of the first variation of the elastic energy, �δEel. The second term takes
into account geometric constraint, C and λðsÞ is the associated Lagrange multiplier. The third term is associated with
kinematic constraint in Eq. (1); the corresponding Lagrange multiplier nðsÞ can be interpreted as the internal force. The last
term is the virtual external work. Note that in the particular case where the external load is conservative, the principle of
virtual work (A.1) expresses the condition of stationarity of the total energy subjected to the three kinematic constraints
listed above, as obtained by Lagrange's method of constrained variations.

Cancelling the term proportional to δk in Eq. (A.1), we obtain the condition of equilibrium with respect to the internal
variable as

�δEel
δk

þλ
∂C
∂k

¼ 0: ðA:2aÞ

Next, the strain increments are combined into a single vector defined by δω ¼∑3
i ¼ 1δωidi, which can be interpreted as the

gradient of virtual rotation, δω ¼ δθ ′, see (Audoly and Pomeau, 2010) for instance. We also define

m ¼ ∑
3

i ¼ 1

δEel
δωi

�λ ∂C
∂ωi

� �
di: ðA:2bÞ

This allows us to rewrite the principle of virtual work in Eq. (A.1) as

�
Z

m � δθ ′ dsþ
Z

n � ðδr ′�δθ � r ′Þ dsþ
Z

ðp � δrþq � δθÞ ds¼ 0: ðA:3Þ

This is the classical expression of the principle of virtual work for inextensible Euler–Bernoulli rods without constraints. By
using geometrical identities and by integrating by parts, one can show (Chouaïeb, 2003; Steigmann and Faulkner, 1993;
Audoly and Pomeau, 2010) that the corresponding equations of equilibrium in strong form are the Kirchhoff equations (13).
Please cite this article as: Dias, M.A., Audoly, B., A non-linear rod model for folded elastic strips. J. Mech. Phys. Solids
(2013), http://dx.doi.org/10.1016/j.jmps.2013.08.012i

http://dx.doi.org/10.1016/j.jmps.2013.08.012
http://dx.doi.org/10.1016/j.jmps.2013.08.012
http://dx.doi.org/10.1016/j.jmps.2013.08.012


M.A. Dias, B. Audoly / J. Mech. Phys. Solids ] (]]]]) ]]]–]]] 23
We conclude than the equilibrium of a constrained elastic rod having an internal degree of freedom k(s) is governed by
the equilibrium of the internal degree of freedom in Eq. (A.2a) and by the classical Kirchhoff equation for the equilibrium of
rods. In the latter, one must use the expression of the internal moment mðsÞ given by the constitutive law (A.2b). Eqs. (A.2a)
and (A.2b) are the main results of this appendix.

Appendix B. Symmetry relevant to the planar, circular state

We identify a symmetry of the equations of equilibrium for a bistrip. By this symmetry, the centerline gets reflected
through to a plane. The ridge does not get flipped, however, and as a result this symmetry is not merely a pointwise
reflection of the entire bistrip. This symmetry accounts for the two family of buckling modes affecting the circular
configuration (the centerline and ridge modes), as explained in Section 5.8.

B.1. Definition of the symmetry

Let us denote G the reflection through the ðxyÞ plane in the Euclidean space, G � ðx; y; zÞ ¼ ðx; y;�zÞ. We consider a solution
S of the equilibrium problem for the bistrip, as summarized in Section 3.7. This solution is specified by the functions

S ¼ ðR;DI ;DII ;DIII ;β;Ω;Λþ ;Λ�;N ;M ;ΔÞ: ðB:1Þ
The symmetry is defined by its action onto the space of configurations: it maps S onto another configuration

~S ¼ ð ~R ; ~DI ;…Þ defined by

~R ðsÞ ¼ G � RðsÞ ðB:2aÞ

~DμðsÞ ¼ �ημG � DμðsÞ ðB:2bÞ

~βðsÞ ¼ βðsÞ ðB:2cÞ

~Ω ðsÞ ¼ �G �ΩðsÞ ðB:2dÞ

~Λ7 ðsÞ ¼ 7Λ7 ðsÞ ðB:2eÞ

~N ðsÞ ¼ G � NðsÞ ðB:2fÞ

~M ðsÞ ¼�G �MðsÞ ðB:2gÞ

~Δ ðsÞ ¼ G � ΔðsÞ; ðB:2hÞ

where μAfI; II; IIIg, and ημ is the sign defined by

ημ ¼ ð�1Þμ ¼
�1 for μ¼ I; III

þ1 for μ¼ II:

(
ðB:3Þ

By Eq. (B.2b), the material vectors are mapped to ~DI ¼ þG � DI ,
~DII ¼�G � DII and

~DIII ¼ þG � DIII . The minus sign in the

definition of ~DII preserves the right-handedness of the frame.

The components of the Darboux vector in the local frame are transformed according to ~Ωμ ¼ ~Ω � ~Dμ ¼ ð�G �ΩÞ� ð�ημG �
DμÞ ¼ ημΩ � Dμ ¼ þημΩμ. This implies (i) ~ΩI ¼ΩI ¼ 0: the symmetric configuration satisfies the constraint (41c), and (ii) the

unconstrained curvatures transform according to

~ΩII ¼ þΩII ðB:4aÞ

~ΩIII ¼�ΩIII : ðB:4bÞ
By a similar argument, the internal moments M and Δ are transformed according to ~Mj ¼ þηjMj and ~Δ j ¼�ηjΔj. Using

these transformation rules, it can be checked that the new state ~S satisfies the equilibrium equations for a bistrip
summarized in Section 3.7, when S is itself an equilibrium solution. Note that an external loading may break this symmetry,
unless it is itself symmetric — in this paper, we ignore the external loading.
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