
Mechanical response of plectonemic DNA:

an analytical solution

N. Clauvelin, B. Audoly, S. Neukirch

UPMC Univ. Paris 06 & CNRS,

Institut Jean le Rond d’Alembert,

4, place Jussieu, Paris, France

February 21, 2008

Abstract

We consider an elastic rod model for twisted DNA in the plectone-
mic regime. The molecule is treated as an impenetrable tube with an
effective, adjustable radius. The model is solved analytically and we
derive formulas for the contact pressure, twisting moment and geo-
metrical parameters of the supercoiled region. We apply our model to
magnetic tweezer experiments of a DNA molecule subjected to a tensile
force and a torque, and extract mechanical and geometrical quantities
from the linear part of the experimental response curve. These recon-
structed values are derived in a self-contained manner, and are found
to be consistent with those available in the literature.

1 Introduction

Mechanical properties of the DNA molecule play an important role in the
biological processes involved in the cell, yet we only have an imprecise view
of these properties. Advances in nanotechnologies make it possible to exert
forces onto isolated DNA filaments: mechanical response of the molecule is
now widely studied. Single molecule experiments provide a powerful way
to investigate the behavior of DNA subjected to mechanical stress. In such
experiments, the molecule is held by optical or magnetic tweezers and forces
and torques are applied to it [28, 8]. The interaction between DNA and
proteins is actively investigated; for instance, the chemical and mechanical
action of an enzyme on a molecule can be inferred from the global deforma-
tion of the molecule [24].

In this paper we focus on a specific type of experiments: a double
stranded DNA molecule is fixed by one end to a glass surface while the
other end is attached to a magnetic bead; using a magnet, a pulling force
and a torque are applied on the DNA filament [30]. Large ranges of pulling
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forces, from one tenth to one hundred piconewton, and number of turns
can be explored in the experiments, and the molecule displays a variety
of behaviors and conformations [1, 27, 7]. We study the response of the
molecule to moderate forces, below 10 pN, and moderate to large number
of turns, equivalent to a positive supercoiling ratio of the order of 0.1. In
experiments, the pulling force is kept constant while the bead is rotated
gradually. The vertical extension of the molecule is recorded and plotted as
a function of the number of turns. Experimental rotation-extension curves
have a characteristic shape and are called hat curves [5, 29]. At zero number
of turns these curves exhibit a maximum, the value of which is explained
by the worm-like chain (WLC) model [18] and its variants. For small num-
ber of turns the vertical extension decreases and the curve takes a rounded
shape. Above a threshold value of the number of turns, the extension of
the molecule decreases linearly. This linear part of the curve is obtained
when the molecule wraps around itself in a helical way, giving rise to a
structure comprising plectonemes. The plectonemic structure is made of
two interwound helical filaments whose geometry is characterized by the
so-called superhelical angle and radius; note that each of these filaments is
itself made of a double-stranded DNA molecule. The superhelical angle and
the twisting moment in the filaments are key parameters that control the
action of topoisomerases [12], RNA polymerase [23], or other enzymes [32]
on DNA. The distance of self-approach of DNA in supercoiled regime has
been the subject of a number of studies [3, 25, 26, 9]. In previous analytical
and numerical work, the double stranded DNA molecule has been modeled
as a twist-storing elastic filament. These approaches have been successful at
reproducing the response of DNA to moderate torque [4, 19], given by the
central region of the experimental curves. The analysis of the linear regions
of these curves, based on a detailed model of plectonemes, was lacking until
recently: in Ref. [17], a composite model based on an empirical free energy
of supercoiled DNA is proposed.

Here we present an elastic rod model for helical supercoiling of the DNA
molecule, which is relevant to large number of turns. Our model is self-
contained and provides a mechanically accurate description of elastic fil-
aments in contact. The molecule is divided in two domains: one where
the configuration is a worm-like-chain, dominated by thermal fluctuations,
and the other one, a superhelical region dominated by elasticity, where the
molecule contacts itself. Several plectonemic regions may lie at various
places of the molecule, but as this does not change the mechanical response
of the system, we refer to these regions as if they were in one piece. We deal
with self-contact by introducing an effective superhelical radius (distinct
from the crystallographic radius of 1 nm, from the size of the Manning con-
densate and from the Debye length, although in the same range of values),
which varies with external loads and salinity of the solution. The effec-
tive radius is defined as the radius of a chargeless, impenetrable and elastic
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tube having the same mechanical response as the molecule. This radius is
not given as a parameter of the model and is extracted from experimental
data. Using an energy approach, we relate geometrical variables (superheli-
cal radius and angle) to applied force and torque. We also characterize the
response of the molecule in the plectonemic regime, extend former numerical
results [20], and show how geometrical and mechanical parameters can be
extracted from experimental data.

2 Model

The present model investigates the equilibrium behavior of an elastic rod
with bending rigidity K0 (the bending persistence length is A = K0/(kT ),
where k is the Boltzmann constant and T the absolute temperature) and
twisting rigidity K3 under traction and torsion as shown in Fig. 1. This
is a coarse-grained model for DNA where base-pairs details are neglected.
For instance, the anisotropic flexibility of the molecule, originating from
base pairing and major-minor grove geometry, is smoothed out at a scale of
several base pairs: a highly twisted anisotropic rod can be replaced by an
equivalent isotropic rod with effective bending rigidity [11].

Geometry

We start with a geometric description of the rod configurations relevant
to the plectonemic regime. This defines a reduced set of configurations
(Ansatz), over which we shall minimize the elastic strain energy associated
with deformations. The rod, of length ℓ, is considered inextensible and
has circular cross-section; let s denote the arclength along the rod. The
strain energy involves, at lowest order, the geometric curvature κ(s) of the
centerline of the rod as well as the twist τ(s). We emphasize that the
twist τ(s) is different from the geometrical (Frénet-Serret) torsion of the
centerline as it takes into account the rotation of material cross-sections
around the centerline. It allows one to distinguish between twisted and
untwisted configurations of the rod having the same centerline. The rod

centerline is parameterized by r(s) and its unit tangent t
def
= dr/ds can

be described with spherical angles, as shown in Fig. 1: α(s) is the zenith
angle and ψ(s) the azimuth angle with respect to the direction ex along the
common axis of the two superhelices in the plectonemic region.

We consider the following configurations, relevant to a large applied num-
ber of turns, n. The tails are assumed to be straight but twisted (thermal
fluctuations will be accounted for by using the rescaled tail length predicted
by WLC theory). The plectonemes are described by two identical and uni-
form helices where, again, each of these helices is itself a double-stranded
DNA molecule. Both the end loop of the plectonemes and the matching
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Figure 1: Sketch of the magnetic tweezers experiment. A B-DNA molecule
of total contour length ℓ is fixed in s = 0 to a glass surface while the other end
in s = ℓ is attached to a magnetic bead. A pulling force Fext and a torque
Mext are applied at the upper end by using a magnet. The superhelical
angle and radius are denoted α and R respectively. The zenith angle α and
the azimuth angle ψ of the tangent vector with regard to the superhelical
axis ex are also shown.
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region between the tails and the plectonemic part are neglected. Conse-
quently the rod comprises two phases: one made up of straight and twisted
tails and the other one of plectonemic structures. The plectonemic phase is
not necessarily made of a single component but, for the sake of simplicity,
we discuss the case of a single plectonemic structure (our results are still
valid if the plectonemes are split into several components).

In the tails the rod is straight and aligned with the ez axis: t = ez. The

geometric curvature κ
def
= |dt/ds| is zero, κ(s) = 0.

In each filament of the plectonemes, the position vector r(s) and the
tangent vector t(s) describe a superhelix of axis ex:











rx(s) = s cosα

ry(s) = χR sinψ(s)

rz(s) = −χR cosψ(s)

and











tx(s) = cosα

ty(s) = sinα cosψ(s)

tz(s) = sinα sinψ(s)

(1)

The other filament of the plectonemes is obtained by a rotation of 180◦

around the axis ex. Here χ = ±1 stands for the chirality of the two helices
and R and α denote the superhelical radius and angle, respectively. In
equation (1), the condition dr/ds = t yields dψ/ds = χ sinα/R. The

curvature in the plectonemes is κ(s)
def
= |dt/ds| = sin2 α

R .
Noting ℓp the contour length spent in the plectonemes, we obtain the

following expression for the integral of the squared curvature over the whole
length of the rod:

∫ ℓ

0

κ2 ds =
sin4 α

R2
ℓp. (2)

The end torque twists the filament. For a rod with circular cross-section,
the twist τ(s) at equilibrium is uniform [2], dτ/ds = 0 for all s. As a result,
the equilibrium configuration of the rod is fully specified by the centerline,
through the variables α, R and ℓp, and an additional scalar τ describing
twist.

The twist τ is geometrically related to the number of turns imposed
on the magnetic bead, n, which is equal to the link of the DNA molecule,
n = Lk. In the present case the link reads [20]:

Lk = Tw + Wr =
1

2π

∫ ℓ

0

τ ds− χ
sin 2α

4π R
ℓp =

1

2π

(

τ ℓ− χ
sin 2α

2R
ℓp

)

, (3)

as we neglect the writhe of the tails.

Energy formulation

Using the above notations the rod is described by four variables: α the
superhelical angle, R the superhelical radius, τ the twist and ℓp the contour
length spent in the plectonemes. We proceed to derive the total energy
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of the system as a function of these four variables. It is the sum of three
terms, V = Vel +Vext +Vint, where the first term is the strain elastic energy,
the second is the potential energy associated with the external loads Fext

and Mext, and the third accounts for interaction of the filaments in the
plectonemes. The strain elastic energy for the rod of total contour length ℓ
is :

Vel =
K0

2

∫ ℓ

0

κ2 ds+
K3

2

∫ ℓ

0

τ2 ds . (4)

We do not take into account the reduction of the effective torsional rigidity
in the tails due to fluctuations [19]. The potential energy is given by:

Vext = −Fext(z(ℓ) − z(0)) − 2πMext n , (5)

where z(ℓ) − z(0) = ℓ− ℓp for straight tails and n = Lk.
If the DNA-DNA interaction was clearly established, we would include

the corresponding interaction energy Vint in the total energy V [10]. This
is not the case and we model the filaments in electrostatic interaction as
effective chargeless hard-core tubes. The effective radius a of these tubes
accounts for a variety of physical mechanisms, including for example the
presence of counter-ions or thermal fluctuations in the plectonemes, which
we do not attempt to model. As in Refs. [33, 25], we do not try to predict the
actual radius a but simply follow its variation under changing experimental
conditions (applied load, salinity, etc.). Doing so, we replace the actual
(unknown) interaction potential Vint(R,α) by a hard-core interaction with
adjustable radius a, and optimize a to best fit a given experiment. In section
3 we show how a can be extracted from experimental measurements.

The parameter a must certainly be larger than the crystallographic
DNA radius 1 nm. It is different from the radius of the Manning con-
densate [14, 15, 16] since approximately a quarter of the charge remains
outside of the Manning condensate. The equilibrium is the solution of a
constrained minimization problem for the elastic energy, subjected to the
impenetrability condition

R ≥ a. (6)

We anticipate on the fact that there is contact, R = a, for typical exper-
imental conditions. Consequently we replace the actual interaction energy
with a constraint term:

Vint = −λ (R− a) , (7)

where λ is a Lagrange multiplier. Note that this term is not a regular energy
but comes from the constraint: the multiplier λ has to be set at the end of
the procedure and chosen in such a way that the constraint R = a is satisfied.

Combining Eqs. (2–7), we write the total potential energy of the system
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as:

V (α,R, τ, ℓp) =
K0

2

sin4 α

R2
ℓp +

K3

2
τ2 ℓ− Fext (ℓ− ℓp)

−Mext

(

τ ℓ− χ
sin 2α

2R
ℓp

)

− λ (R− a) . (8)

In Ref. [13] a similar energy function has been introduced but the rest of
analysis differs from ours. Indeed, their approach focuses on statistical me-
chanics and the analysis of the state of lowest energy is overlooked. More-
over, the parameter a is fixed a priori to the crystallographic radius of DNA,
a = 1 nm, which is a strong restriction and an underestimation of the actual
distance of self-approach of DNA in saline solution. In contrast, we under-
take a detailed analysis of the equilibrium solutions, with thermal fluctua-
tions considered in the tails; this allows us to derive simple formulas for the
force and the moment as a function of the superhelical variables, applicable
to magnetic tweezers experiments.

3 Results

Mechanical equilibrium is given by the Euler-Lagrange condition for the
stationarity of the potential V (α,R, τ, ℓp) in Eq. (8) with respect to its
variables,

(

∂V

∂τ
,
∂V

∂α
,
∂V

∂ℓp
,
∂V

∂R

)

= 0.

The first condition ∂V/∂τ allows one to recover the constitutive relation
for twist deformations, Mext = K3 τ , given that the twisting moment is
uniform in the filament and equal to the applied torque Mext.

Variation of the total energy with respect to α gives the expression of
the applied torque Mext in terms of the superhelical variables α and R:

Mext = −
2χK0

R

cosα sin3 α

cos 2α
, (9)

which is what was found for purely plectonemic solution (no tails) [31].
The condition ∂V/∂ℓp = 0, combined with Eq. (9), allows one to relate

the pulling force Fext to the superhelical geometry:

Fext =
K0

R2
sin4 α

(

1

2
+

1

cos 2α

)

. (10)

This formula justifies and extends the numerical fit Fext ∝ K0 α
4/R2 found

in Ref. [20] for small values of α.
The Euler-Lagrange condition with respect to R yields an equation in-

volving the Lagrange multiplier λ. The quantity λ/ℓp can be interpreted as
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the contact force per unit length, p, of one filament onto the other. Eqs. (8–
9), together with the condition ∂V/∂R = 0, yields:

p =
λ

ℓp
=
K0

R3

sin4 α

cos 2α
. (11)

Note that this pressure (more accurately, force per unit length) is positive
for α ≤ π/4; if our assumption of contact R = a was incorrect, this would
be indicated by a negative pressure value here.

In magnetic tweezers experiments, the pulling force Fext is imposed al-
though the applied torque Mext is unknown. The two unknowns R and α
are then related by Eq. (10); in the next Section, a second equation relating
those unknowns and the extension z is given, which makes it possible to
solve for R and α. The twisting moment can then be found from Eq. (9).

Vertical extension of the filament

In magnetic tweezers experiments, the measurable quantities are the vertical
extension z and the number of turns n imposed on the bead. Using Eq. (3)
for n = Lk, the equation z = ℓ−ℓp and the constitutive relation τ = Mext/K3

where Mext is found from Eq. (9), we obtain the vertical extension of the
filament as a linear function of the number of turns n:

z =

(

1 +
2K0

K3

sin2 α

cos 2α

)

ℓ+ χn
4π R

sin 2α
. (12)

Thermal fluctuations dominantly affect the tails and make the end-to-end
distance z of the molecule smaller than the contour length ℓ− ℓp of the tail
parts, by a factor ρwlc ∈ [0, 1]: z = ρwlc (ℓ − ℓp). This factor depends on
both the pulling force Fext and the bending persistence length A = K0/(kT )
and can either be read off an experimental hat curve from the value z(n =
0) = ρwlc ℓ, or computed from theoretical formulas [18, 6]. The dependence
of ρwlc on the pulling force makes the tails effectively extensible (this is the
classical entropic stiffness of a chain). To account for these thermal effects,
we replace Eq. (12) with:

z = ρwlc

(

1 +
2K0

K3

sin2 α

cos 2α

)

ℓ+ χρwlc

4π R

sin 2α
n . (13)

One of the main features of the experimental hat curves is the linear
decrease of the vertical extension with the number of turns. We define the
slope q in the linear part of the hat curve as:

q
def
=

∣

∣

∣

∣

dz

dn

∣

∣

∣

∣

= ρwlc

4π R

sin 2α
. (14)

Given experimental values of Fext and q, Eqs. (10) and (14) can be solved
for R and α. Since q (and Fext) are constant along the linear part of a hat
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curve, the values of R and α thus determined will be constant as well. As a
result, the twisting moment in the molecule, given by Eq. (9), is constant,
for a given experiment, along the linear region of the hat curve, a property
that has been previously reported in the literature [5, 17] and which is a clear
outcome of the present model. An interpretation of the fact that R and α
are constant in the linear region of the hat curve is that each additional turn
of the bead is used to convert a small piece of tail into plectonemes.

Twisting moment

The twisting moment in the molecule, which is uniform and equal to Mext at
equilibrium, cannot be measured in magnetic tweezers experiments. How-
ever, it has been shown that enzyme activity such as RNA polymerase de-
pends on the value of the twisting moment in DNA [23]. The value of Mext

can be determined from Eq. (9) once R and α are known, as explained above.
Here, we give a formula for Mext directly as function of the experimental
slope q and the external force Fext. Indeed, using Eq. (14) to eliminate R
in Eqs. (9) and (10), one obtains Mext(q, α) and Fext(q, α) as functions of q
and α. It is then possible to eliminate α, which yields:

Mext = m+
(

m2 + 2K0 Fext

)1/2
, where m =

q Fext

4π ρwlc

−
3π ρwlcK0

2q
(15)

In the limit of small α, one can expand the functionsMext(q, α) and Fext(q, α)
prior to elimination of α, and this leads to a simplified formula:

Mext ≃
2 q

3π ρwlc

Fext, (16)

where, as explained above, ρwlc = z(n = 0)/ℓ. As shown in Fig. 4, this ap-
proximation is accurate when used with typical experimental values. Eq. (16)
provides a simple and direct mean of evaluating the twisting moment in mag-
netic tweezers experiments, based on the slope of the linear part of the hat
curve only. Note that it should not be inferred from Eq. (16) that Mext

depends linearly on Fext, as the slope q is itself a function of Fext.

Superhelical angle limit

It is known that the topology of contact between two impenetrable helical
tubes winding along a common axis changes when α becomes larger than
π/4 [21]. The possibility of such a change of topology is not considered in
our model (being specific to hard-core repulsion between tubes, it is not
relevant to DNA molecules undergoing long-range electrostatic repulsion
anyway). Nevertheless, the equilibrium solutions found here are all such that
α < π/4. This upper bound has a mechanical origin, and not a geometrical
one: the expressions for Fext in Eq. (10) and for Mext in Eq. (9) both diverge
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Figure 2: Experimental hat curves showing the vertical extension of a
lambda phage DNA 48kbp molecule as a function of the number of turns
imposed on the magnetic bead (salt concentration 10mM, temperature
298 K). Experimentally measured persistence length of the molecule is
A = 51.35 nm. Each curve corresponds to a fixed pulling force Fext: 0.25,
0.33, 0.44, 0.57, 0.74, 1.10, 1.31, 2.20, 2.95 pN. Triangles represent the fit
for the slope q of the linear region. Data kindly provided by V. Croquette
(CNRS, France).

at α = π/4 and plectonemic solutions with a superhelical angle larger than
π/4 are unstable.

Application to experiments

The model is used to extract mechanical and geometrical parameters from
experimental data. To allow comparison with previous work, we use the
same data as in [20]. These data are shown in Fig. 2; they were obtained on
a 48kbp lambda phage DNA molecule in a 10mM phosphate buffer.

For each curve in Fig. 2, corresponding to a given value of the external
force Fext, we extract the slope q by fitting the linear region. The superhelical
variables R and α are found by solving Eqs. (10) and (14), and are plotted
in Fig. 3 as a function of Fext. The reconstructed values of R are in the
nanometric range; they decrease with the pulling force, from approximately
6 to 2 times the DNA crystallographic radius in this particular experiment.
At large values of the force, R is close to (and actually smaller than) the
Debye length, 3.07 nm in 10 mM salt, and the Manning condensation radius,
3.18 nm in 10 mM salt [22]. We note that the values of R found here in the
presence of a pulling force are smaller than (and in the same range as) in
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Figure 3: Reconstructed values of the plectonemic radius R as a function of
the pulling force, from the data in Fig. 2 by solving Eqs. (10) and (14). The
angle α is shown in the inset.

Ref. [26] where no force is applied, which is consistent.
The reconstructed values of the twisting moment Mext and of the con-

tact pressure p are given in Fig. 4, based on the same experimental data.
The values of Mext are determined both by Eq. (9) using the previously
computed values of R and α, and by the approximate formula (16) directly.
A good agreement is obtained, which validates the proposed approximation.
The values of Mext are also compared to those predicted by a composite an-
alytical model, see Eq. (17) in Ref. [17] (this model uses effective parameters
determined from Monte-Carlo simulations [34]).

4 Conclusion

We have shown that, under the approximation that thermal fluctuations are
neglected in the plectonemes, one can calculate analytically the response
of twisted DNA: supercoils are described by a mechanically exact and self-
contained model. Self-contact in the plectonemic region is treated with a
hard-core potential; an expression for the contact pressure between the two
dsDNA is derived. The hard-core radius is an effective parameter deter-
mined, for a given value of the applied force, from the slope of the linear
region of the experimental curve. A formula for the twisting moment is
proposed, as a function of the slope of the linear region of the experimental
hat curve only. We apply this analysis to experimental data from which
we extract the mechanical quantities: superhelical radius and angle, contact
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Figure 4: Reconstructed values for the twisting moment in the molecule
based on the data shown in Fig. 2, using the exact formula in Eq. (9) (solid
squares), and the small angles approximation in Eq. (16) (open circles).
Comparison with the prediction of the composite model in Ref. [17] (curve).
Contact pressure is shown in inset.

pressure and twisting moment. We compared these values with predictions
from previous analyses, when available, and found that they are consistent.
In future work, we shall extend the present model to deal with long-range
interaction potentials, predict the superhelical radius, and utilize magnetic
tweezers experiments to probe DNA-DNA electrostatic interaction. The
present paper is a first step towards a mechanically accurate description of
bare dsDNA subjected to tensile and torsional loads, a problem relevant to
the architecture of DNA in the cell nucleus where proteins come into play.
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