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Trick roping evolved from humble origins as a cattle-
catching tool into a sport that delights audiences the
world over with its complex patterns or ‘tricks’. Its
fundamental tool is the lasso, formed by passing one
end of a rope through a small loop (the honda) at
the other end. Here we study the mechanics of the
simplest rope trick, the Flat Loop, in which the rope
is driven by the steady circular motion of the roper’s
hand in a horizontal plane. We first consider the case
of a fixed (non-sliding) honda. Noting that the rope’s
shape is steady in the reference frame rotating with the
hand, we analyze a string model in which line tension
is balanced by the centrifugal force and the rope’s
weight. We use numerical continuation to classify the
steadily rotating solutions in a bifurcation diagram,
and analyze their stability. In addition to Flat Loops,
we find planar ‘coat-hanger’ solutions, and whirling
modes in which the loop collapses onto itself. Next,
we treat the more general case of a honda that can
slide due to a finite coefficient of friction of the rope
on itself. Using matched asymptotic expansions, we
resolve the shape of the rope in the boundary layer
near the honda where the rope’s bending stiffness
cannot be neglected. We use this solution to derive
a macroscopic criterion for the sliding of the honda
in terms of the microscopic Coulomb static friction
criterion. Our predictions agree well with rapid-
camera observations of a professional trick roper and
with laboratory experiments using a ‘robo-cowboy’.
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1. Introduction
Trick roping, originally used by Mexican vaqueros and American cowboys to catch cattle, has
evolved into a hybrid of sport and art that involves performing various figures or tricks with a
lasso. These range from the simplest Flat Loop trick through moderately difficult ones like the
Wedding Ring and the Merry-go-Rounds to complicated tricks like the Texas Skip, in which the
roper jumps back and forth through a rapidly spinning vertical loop (Fig. 1). To our knowledge,
however, the physics underlying these tricks has not yet been explored in a quantitative way.
Accordingly, our purpose here is to formulate and study a ‘slender rope’ dynamical model
for the lasso that includes all the essential forces involved, thereby revealing the mathematical
scaffolding that underpins trick roping.

From a mechanical point of view, a lasso is a slender elastic rod that moves and deforms subject
to complex driving-, boundary-, and self-contact conditions. Bodies in this class are common in
nature, industry and sport and have consequently been extensively studied. In biology, bacteria
and other microscopic organisms move by waving one or more slender elastic flagellae [1]. A
major industrial application is yarn manufacturing [2], where a variety of whirling modes are
observed, including ‘balloons’ that are stationary in a co-rotating reference frame [3–6]. Finally,
slender elastic rods are common in the domain of sport, from childrens’ rope jumping [7] to the
coiling of a mountaineer’s rope played out onto the ground [8,9].

The most systematic treatment of trick roping to date is the book by Bunks [10], which
describes a variety of tricks and the techniques required to master them, and gives simplified
discussions of the physics involved in each. Among the most common tricks are the Merry-Go-
Rounds, the Wedding Ring, Spoke Jumping and the Texas Skip. As illustrated in Figure 1, they differ
in the relative position, size and orientation of the lasso and the roper. A prerequisite to master

(a)

(b) (c) 

(d)

Figure 1. Four classical rope tricks: (a) Merry-Go-Rounds, (b) Spoke Jumping and (c) the Wedding Ring. They are all

based on a flat loop of variable size and position relative to the cowboy. More complex tricks such as the Texas Skip (d)

involve a vertical loop.

these refined tricks is thus to control the size and position of the lasso’s loop. Note that all these
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tricks are essentially time-dependent, as there exists no reference frame in which the motion of
the lasso is stationary. This makes them difficult to master for the cowboy, and difficult to model
for the physicist.

To avoid the complication of time-dependence, we focus here on the simplest of all rope tricks,
the so-called Flat Loop (Fig. 2). In this trick, the motion of the lasso is forced by a uniform circular
motion of the cowboy’s hand in a horizontal plane. The cowboy’s arm is extended sufficiently
far from his body to avoid collisions with the rope. To avoid accumulating twist in the rope,
the cowboy constantly rolls the rope between his thumb and forefinger while spinning it. The
configuration of the rope is stationary in a reference frame that rotates with the hand. The portion
of the rope from the hand to the honda is called the spoke, and the rest of the rope is called the loop
(Fig. 2a).

2. Methods
We used three complementary approaches in our study of the mechanics of the lasso:

(a) Field observation
The first author (Brun) spent considerable time mastering the flat-loop trick and found that one
of the keys to this trick is a careful initial adjustment of the relative lengths of the spoke and
the loop prior to spinning, as reported by Bunks [10]. The experience gained in training by hand
proved very useful in setting up the laboratory experiment described below. To complement our
limited expertise, we also obtained the aid of Jesus Garcilazo (JG), a professional trick roper who
works at Disneyland Paris in Marne-la-Vallée (France). During a visit to our laboratory at UPMC,
he performed a variety of rope tricks that we filmed using two synchronized high-speed video
cameras. Figs. 1d and 2a show JG performing the Texas Skip and the Flat Loop trick, respectively.

(b) Experiments
An experimental set-up, ‘robo-cowboy’, was designed to reproduce the spinning of a lasso by a
cowboy, see Figure 2b. It is composed of an electric stepper motor, an arm attached to the motor’s
rotating axis, and a mechanical hand fixed to the arm at an adjustable distance R from the motor
axis (inset in Figure 2b). The artificial hand comprises a wrist (W) that pivots freely in a vertical
plane and artificial fingers (F) in the form of a cylindrical housing that is free to rotate about its
axis, preventing the accumulation of twist in the rope. The angular speed of the motor may be
varied continuously in the range 8.63 rad s−1 6Ω 6 20.42 rad s−1. We used two kinds of ropes in
the experiments: either a ball chain which has negligible resistance to bending, or a cotton rope.
In some experiments, the honda was a slipknot that slides along the rope with significant solid
friction; in others, the sliding of the honda was prevented using adhesive tape.

(c) A rod model
Our third approach is to obtain solutions of the equations governing the dynamics of a steadily
rotating lasso. We introduce a generic set of equations for an elastic rope, which we will then
solve in various limits: zero or small non-zero bending rigidity, and an infinite or finite friction
coefficient. Thanks to the free rotation of the rope’s upper end, the twisting moment is zero
everywhere and can be ignored. The steadily rotating shapes of the lasso are then governed by
a balance of four forces: the rope’s weight, the centrifugal force, the tensile axial stress, and the
force that resists bending of the rope. In the reference frame rotating with the lasso at an angular
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Figure 2. (a) A trick roping expert (Jesus Garcilazo) performing the Flat Loop trick. The lasso has a (total) curvilinear

length L, and comprises a spoke of length Ls and a loop of length Ll =L− Ls, connected by a slipknot (the honda).

(b) The experimental setup (‘robo-cowboy’). The upper end of the rope is fixed in a cylindrical metal housing (F) that is

free to rotate about its axis, and which is analogous to the trick roper’s fingers. The upper end of the housing is in turn

attached to a pivot (W) that is analogous to the roper’s wrist. Finally, the pivot is attached to a bar that is rotated in a

horizontal plane by a motor M.

velocity Ω, the equations are:

n′ + λ g= λΩ2 ez × (ez × x), (2.1a)

m′ + t× n= 0, (2.1b)

m=B t× t′, (2.1c)

|x′|= 1. (2.1d)

In (2.1), λ is the mass per unit length of the rope, g=−g ez is the gravitational acceleration, ez
is the unit vector along the vertical axis, x(s) is the center-line of the rope as a function of the
arclength s, t(s) is the unit vector tangent to the axis, n(s) is the internal force resultant, m(s) is
the bending moment, B is the bending stiffness, and primes indicate differentiation with respect
to s. Eqns. (2.1a) and (2.1b) express the balance of forces and moments, respectively, acting on
an element of the rope. Eqn. (2.1c) is the constitutive relation for the bending moment. Finally,
eqn. (2.1d) is the condition of inextensibility of the rope’s axis. Altogether, Eqns. (2.1) are the
equations for a rod having zero twisting rigidity, also know as an elastic curve.

The lasso problem can be expressed as two coupled problems for the spoke (06 s6L−s ) and
for the loop (L+

s 6 s6L), which are denoted by (S) and (L), respectively (Figure 3). The set of
equations (2.1) is valid in both domains (S) and (L). The boundary conditions at the two ends of
the rope are

x(0) =R ex, (2.2a)

m(0) = 0, (2.2b)

m(L) = 0. (2.2c)
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outer problem inner problem

Figure 3. The Flat Loop trick is described mathematically as static solutions in a rotating frame of an inextensible string

or elastic rod held at a distance R from the axis.

The matching conditions at the honda s=Ls are

x(L−s ) =x(L+
s ) =x(L), (2.3a)

x′(L−s ) =x′(L+
s ), (2.3b)

− n(L−s ) + n(L+
s )− n(L) = 0, (2.3c)

m(L−s ) =m(L+
s ). (2.3d)

Equation (2.3a) ensures that the position x of the rope at the end of the spoke (s=L−s ) matches
those at both the beginning (s=L+

s ) and the end (s=L) of the loop. Equation (2.3b) applies
in the case where the bending stiffness B 6= 0, and imposes the continuity of the tangent across
the honda. Eqn. (2.3c) expresses the balance of forces acting on the honda. Finally, eqn. (2.3d)
expresses the balance of moments on a small segment surrounding the point of contact s=Ls
with the honda.

We shall first consider the case of a fixed (non-sliding) honda. Then, for any choice of the
parameters B, Ω, R, L, Ls, λ, and g, we expect a unique solution in general, and in any case
a discrete set of solutions. Dimensional analysis shows that the dynamics are governed by four
dimensionless groups which represent respectively the dimensionless bending stiffness, hand
radius, spoke length, and hand frequency:

B =
B

L3λg
, R=

R

L
, Ls =

Ls
L
, Ω =Ω

(
L

g

)1/2

. (2.4)

Note that we have hitherto neglected air drag. This can be justified by comparing the ratio of the
typical drag force per unit length fd and the typical centrifugal force per unit length fc:

fd
fc

=
CDρairaV

2

λV 2/Ls
(2.5)

where CD is the drag coefficient, ρair is the density of air, a is the rope radius, and V ∼ΩLs is
a typical velocity. Assuming ρa ≈ 1 kg m−3, λ≈ 0.083 kg m−1, a≈ 5 mm, Ls ≈ 0.6 m and CD to
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be of order 1, we find fd/fc ≈ 0.03. This contrasts with the case of a jumprope, for which air drag
cannot be neglected [7].

(d) Outline
The order of our presentation is influenced by the fact that B is a small number for a typical
lasso. We measured the elasto-gravitational length Lb = (B/(λ g))1/3 of our cotton rope by fitting
its deflection as a function of the hanging length in a cantilever geometry, which gave Lb ≈ 11

cm. For a lasso of length L≈ 4 m, B ≡ (Lb/L)
3 ∼ 2× 10−5. In some experiments we used a ball

chain in which the balls offer negligible resistance to bending as long as the curvature remains
moderate.

Given the small value of B, we start by seeking steadily rotating solutions for B = 0. This is
the string problem studied in section 3. We obtain solutions by numerical continuation, compare
them to experiments, and analyze their stability. All this is done for a non-sliding honda, i.e. with
a prescribed spoke length Ls.

In section 4, we study the influence of the small but non-zero bending rigidity B, still for
a non-sliding honda. The bending rigidity gives rise to a flexural layer in the vicinity of the
point of contact with the honda, s=Ls, where the curvature is relatively large. Using the theory
of boundary layers, we give a detailed account of this region. This enables us in particular to
calculate the angle between the contact force acting at s=Ls and the tangent x′(Ls).

In § 5, we analyze how the honda slides in the presence of dry friction, and show how this
selects the curvilinear length of the spoke Ls. To do this, we use matched asymptotic expansions
to combine the ‘outer’ (string) solution from § 3 with the ‘inner’ (rod) solution obtained in § 4
to provide a complete description of a lasso having a small bending rigidity B 6= 0 and a finite
friction coefficient µr <∞ (see Figure 3). In this framework, we can apply Coulomb’s static
friction criterion inside the flexural layer, and determine which shapes are stable with respect
to friction. This allows us to discuss the selection of the relative curvilinear lengths of the loop
and spoke, which we compare with laboratory experiments.

3. Outer solution: the string problem
In this section the bending stiffness B is set to zero, and the honda is not allowed to slide. In the
analysis this is achieved by fixing the spoke length Ls; in the experiments, by fixing the loop to
the spoke using a piece of adhesive tape.

(a) The string model
Consistent with our choice of the dimensionless parameters, we rescaled lengths using L, times
using

√
L/g, and forces using the total weight λLg. A bar is used to denote dimensionless

quantities, such as the arclength s= s/L, the position x=x/L, the internal force n=n/(λLg),
etc.

The set of equations (2.1) are singular in the limit B = 0, and only a subset of the boundary
conditions (2.3) can be enforced. In particular, the conditions (2.3c) and (2.3d) on the moment
and (2.3a) on the tangent must be discarded. We thus obtain the string model, whose governing
equations

n′ − ez =Ω
2
ez × (ez × x), (3.1a)

n=N t, (3.1b)

|x′|= 1, (3.1c)
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must be solved subject to the boundary and matching conditions

x(L
−
s ) =x(L

+
s ) =x(1), (3.2a)

−n(L−s ) + n(L
+
s )− n(1) = 0, (3.2b)

x(0) =R ex. (3.2c)

In the above equations the unknown position x, tangent t, internal force n and scalar tension N
are all functions of the rescaled arclength s, and a prime denotes a derivative with respect to s.
Note that the unit tangent is defined by t=x′.

From the original constitutive law (2.1c) and the balance of moments (2.1b), we recover the
classical fact that the internal force in a string is along the tangent, hence equation (3.1b).

(b) 3D solutions by numerical continuation
Analytical solutions for a steadily rotating string can be found in implicit form in terms of
elliptic integrals [12] but we opted for a numerical solution. The string problem stated above
involves three dimensionless parameters,

(
R,Ls, Ω

)
. We solved it for different values of these

parameters using a numerical continuation method implemented in the open-source software
library AUTO-07p [11]. The first step of the solution procedure is to specify simple mathematical
forms for the spoke and the loop: in our case, we chose a horizontal circle for the loop and a
straight line for the spoke. However, this initial state does not satisfy all the governing equations
and boundary/matching conditions. We therefore introduced modified governing equations and
boundary/matching conditions that are satisified by the initial configuration, and that contain
several continuation parameters ci. The parameters ci are then gradually adjusted until the
true governing equations and boundary/matching conditions are reached, at which point the
initial solution has been transformed into the desired solution of the full unmodified problem.
Some solutions obtained in this way are shown in Figure 4 for variable R or Ls with the other
parameters held constant. All solutions we found exhibited mirror symmetry across the vertical
plane (Oxz) passing though the cowboy’s hand and the axis of rotation, even though our starting
solution did not itself have this symmetry. We believe that no non-symmetric solutions exist for
the string model, though we can offer no proof for this. Our symmetric solutions of the string
problem will provide the outer solution of the matched asymptotic expansions when we analyze
the case B� 1 below.

(c) Experimental validation of the string model
To validate these solutions experimentally, we used a ball chain of length L= 173 cm mounted
on the ‘robo-cowboy’. The sliding motion of the honda was prevented using scotch tape. The
curvilinear length Ls of the spoke is fixed at Ls = 51 cm, and the upper endpoint is held at a
distanceR= 5.5 cm from the axis. In view of the range of angular velocities allowed by our motor
(§2(b)), the corresponding dimensionless parameters are

R= 0.032, Ls = 0.29, 3.5≤Ω ≤ 8.5 (3.3)

A typical experimental sequence is shown in Figure 5a. The experimental shapes are
qualitatively similar to the one obtained by Jesus Garcilazo (Figure 2). A superposition of 8
experiments performed at angular velocities in the range 3.5<Ω < 8.5 is shown in Figure 5b.
A good qualitative agreement is obtained with the numerically calculated equilibrium shapes.
A quantitative comparison can be made using the position of the ‘tip’ of the loop (xt, zt) =

(x(Lt), z(Lt)), where Lt = 1
2 (1 + Ls) is the arc-length coordinate s at the midpoint of the loop.

The agreement in Figure 5c is excellent and involves no adjustable parameter.
The dependence of the shape of the lasso on the angular velocity Ω can be interpreted as

follows. For any angular velocity, the loop is almost planar and the plane containing the loop
becomes more nearly horizontal as the angular velocity is increased: large centrifugal forces tend
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where i is the index labelling each configuration, (b) Ls = 0.1 (i+ 2) and (Ω,R) = (5, 0.02). The two configurations

corresponding to i= 0 are identical.

to bring the tangents into the horizontal plane, and as a result the loop moves upwards and
the spoke folds onto itself. Numerical simulations show that in the limiting case Ω→∞ (large
angular velocity, or zero gravity), the lasso becomes planar and the spoke becomes folded at a
point where the tension vanishes. Note that fold points are allowed in the string model (B = 0),
but are forbidden in the rope model because the bending energy penalizes curvature.

From the side, the shape of the lasso looks like the second whirling mode of a hanging chain [5].
Compared to a whirling chain, however, a loop is present, which opens up spontaneously into
a roughly circular shape. In Appendix A, we carry out a detailed bifurcation analysis for the
limit R= 0, which shows that the typical shape of the lasso in the Flat Loop trick arises from a
combination of two bifurcations. The trivial configuration of the lasso hanging vertically with
a closed loop becomes unstable beyond some critical angular velocity. Two instabilities are
possible: one that opens up the loop in a vertical plane, resulting in what we call ‘coat-hanger’
shapes, and the other one that bends the spoke in a perpendicular vertical plane, similar to what
happens when a rigid circle is attached to a spinning string [13]. Depending on the values of the
parameter Ls, these instabilities can take place in any order. When R= 0 the Flat Loop is obtained
by combining these two bifurcations. We refer the reader to the Appendix A for details. Note
that when R 6= 0, the bifurcation from the unbuckled configuration to whirling states disappears
(imperfect bifurcation).

(d) Stability analysis of the outer solution
We also performed a stability analysis of our steadily rotating solutions using the dynamical
equations governing the unsteady motion of a string. These equations, as well as the details of
the stability analysis, are reported in Appendix B. The results are presented in the rest of this
section, where the (complex) growth rate of the different modes is denoted by σ.
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Figure 5. Experiments using a ball chain driven by our ‘robo-cowboy’, corresponding to the parameters listed in

equation (3.3). (a) Time sequence of a full period of rotation, for Ω = 8.5. The black segment visible on top of the

frames is the rotating arm of the motor. (b) Superimposed side views of experimental and numerical configurations for

R= 0.032,Ls = 0.29, and 3.5≤Ωs ≤ 8.5 (c) Comparison of experimental (dots) and numerical (solid curves) position

of the tip T as a function of angular velocity. The configuration marked by a star in (b) and the datapoints marked by a

star in (c) correspond to the time sequence shown in (a).

For each lasso configuration we always found a set of marginally stable (<σ= 0) oscillatory
modes with vibrational frequencies =σ. The existence of such modes could have been anticipated
since we are working with a string under tension. Within a narrow range of angular velocities,
however, the vibrational modes are accompanied by weakly unstable modes (always the third
one). For example, for R= 0.032 and Ls = 0.29, unstable modes exist only for 5.5756Ω 6 5.925

(Figure 6). Note that the corresponding growth rates <σ are small: the fastest growing mode in
Fig. 6 (at Ω = 5.75) has <σ≈ 0.02Ω, which means that several tens of turns are required for the
instability to be substantially amplified. Experimentally we did not observe any instability of
the ball chain, probably because the various sources of dissipation in the experiments, including
air drag and the friction at the joints connecting the balls, can restabilize the weak instability
predicted using the non-dissipative string model.

The results of a more systematic investigation of the range of unstable parameters is presented
in Figure 8 below. Numerically, we investigated the modes lying in the range 06=σ 6 7, which
typically contains the first six modes (this is what happens for R= 0.032, Ls = 0.29 and Ω = 5 for
example).

4. Inner flexural layer near the honda
We have neglected the bending rigidity B of the lasso so far. This assumption is valid as long
as the curvature of the rope’s center line stays small, but breaks down when that curvature
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0.015

Figure 6. Largest growth rate <σ predicted by the linear stability analysis described in Appendix B, as a function of

the angular velocity Ω. The same parameter values are used as in the experiments (§3(c)), namely R= 0.032 and

Ls = 0.29. An instability is present in a small range of values of Ω around Ω = 5.75. There, the maximum growth rate

remains small <σ= 0.019Ω. A more detailed investigation of the range of unstable parameters is presented in Figure 8.

becomes comparable to the inverse bending length `−1b = (N/B)1/2, whereN ∼ λgL is the typical
magnitude of the tension times cross-sectional area and B is the rope’s bending stiffness. Using
the string model, we found a discontinuity of the tangent at the point s=Ls of contact with
the honda, corresponding to an infinite curvature. Below, we restore the bending stress in an
‘inner’ layer around the honda, where it cannot be neglected, and thereby regularize the infinite
curvature.

Because the tangent at the point of contact with the honda was discontinuous in the string
model, Coulomb’s static friction criterion for dry friction cannot be applied: it requires the
direction of the tangent to be specified. One of the main benefits of the inner layer analysis below
is that the direction of the tangent will be resolved, so that dry friction can be handled.

This section is concerned with analytical development: until the end of the section, we revert
to physical (i.e. dimensional) quantities, so as to make the equations more legible.

The inner problem involves solving the equations for an elastica (B 6= 0), subject to appropriate
matching conditions coming from the outer solution (string model,B = 0). The inner region is the
portion of the lasso within a typical distance ∼ `b of the honda, as indicated by the shaded circle
in Fig 7a. Denote the three strands of the lasso meeting at the honda by the subscripts ‘s’ (on
the spoke side), ‘l’ (the beginning of the loop) and ‘h’ (the honda, i.e. the end of the loop). The
forces exerted by these strands on their meeting point are known from the outer solution, and
are ns =−n(L−s ), nl =n(L+

s ) and nh =−n(L) (see Figure 7b). Here, the signs depend on the
position of each strand with respect to the honda, relative to the conventional orientation of the
arc-length s.

The balance of forces in equation (3.2b) takes the form ns + nl + nh = 0, and implies that
the three strands are coplanar. Therefore, the inner problem involves solving the following
equilibrium problem for two planar elasticas, as sketched in Figure 7b: an infinitely long planar
elastica (made up by the strands s and l), subjected to forces nl and ns applied at its endpoints at
infinity, is connected through a hinge to a semi-infinite planar elastica (strand h) pulled by a force
nh applied at infinity. We assume that the hinge is perfect.

We first determine the equilibrium shape of the strands s and l, using a generic analysis
applicable to either one. Consider a Cartesian basis (u,v), such that v is aligned with the direction
of the force (ns or nl) coming from the outer solution (Figure 7c). At distances s� `b far from
the honda, the elastica is asymptotically aligned with the direction v of the applied tensile force.
Let θi(s) be the angle between the tangent to the elastica and v, where i= s or l is the strand
label. The tangent to the elastica, introduced earlier in equation (2.1), is ti = [sin(θi), cos(θi)] in
the Cartesian basis (u,v). The equations governing the equilibrium of the elastica are derived
from equations (2.1) by setting λ= 0, which is valid because the effect of gravity can be neglected
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(a) (b) (c)

Figure 7. (a) Sketch of a the global solution: the outer (string) solution is valid far from the honda, and has to be matched

with the inner solution inside the shaded disk. The equilibrium of the honda, ns + nl + nh = 0, implies that the inner

problem is planar. By the analysis of the outer (string) problem, we know that the loop is symmetric, and define α to be

half its angle at the honda. (b) The inner problem, of typical size `b. (c) Elastica solution relevant to either of the strands

s or l.

within a distance O(`b) from the hinge. The governing equations are then

−B θ′i =mi, (4.1a)

m′i + ni sin θi = 0, (4.1b)

where mi is the bending moment in the perpendicular direction, and ni = |ni| is the intensity of
the pulling force at infinity. Matching to the outer solution requires

θi→ 0 for s→∞, (4.2)

Eliminating mi from equations (4.1a) and (4.1b), integrating the result, and setting the constant of
integration from the asymptotic condition θi→ 0 for s� `b, we obtain:

B

2
θ′i

2
= ni (1− cos θi). (4.3)

An additional integration then yields:

θi(s) = 4 tan−1
{
exp

[(ni
B

)1/2
(s0i − s)

]}
, (4.4)

where, s0i is a constant of integration related to the initial slope θi(0). In equation (4.4), the slope θi
decays exponentially on the lengthscale `b ≡ (B/N)1/2, as predicted above by a scaling analysis.

To match the two solutions at the honda, we observe that the symmetry of the outer solution
for the loop implies |nl|= |nh|. The spoke force ns =−(nl + nh) therefore bisects the angular
sector spanned by nl and nh, as shown in Figure 7b. Denoting by 2α the opening angle of the
loop at the honda, as predicted by the string model, we see that both the angle between ns and
nl and that between ns and nh are (π − α) (Figure 7b). In addition, |nl|= |nh| implies:

|ns|= 2 |nl| cosα (4.5)

by simple trigonometry.
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The honda applies a point force at the boundary s=Ls between the spoke and the loop, where
both the tangents and the bending moment are continuous. The continuity of the tangents requires
θs(0) + (π − α)− θl(0) = π, or

θs(0) = α+ θl(0). (4.6)

The continuity of the bending moments mi =−B θ′i implies, by equation (4.3),

nl
(
1− cos θl(0)

)
= ns

(
1− cos(α+ θl(0))

)
(4.7)

Inserting (4.5) into (4.7) and rearranging, we obtain:

θl(0) = π − 2α+ cos−1(1− 2 cosα). (4.8)

We have therefore derived a complete solution of the inner problem in terms of the angle α set by
the outer problem.

The last step is to calculate the Coulomb angle φ, defined as the angle between the direction of
the force nh applied by the honda and the normal k to the elastica at the point of contact s=Ls,
as sketched in Figure 7b. From the figure, we have φ+ π − α= π/2 + θs(0), which yields:

sinφ= sin
(
α+ θs(0)−

π

2

)
= 1− 2 cosα, (4.9)

after elimination of θs(0) and θl(0) using (4.6) and (4.8). The tangent of the Coulomb angle can
therefore be expressed as:

tanφ= f(cosα) where f(u) =
1
2 − u√
u (1− u)

. (4.10)

To sum up: at this point, we have derived (i) the outer solution by solving a string problem
(§3), and (ii) the inner solution by solving the flexural layer (§4). The latter allows us to calculate
the Coulomb angle in terms of the former. We can therefore proceed to re-examine the solutions
of the string problem, now addressing the possibility of frictional slip at the honda.

5. Combining inner and outer solutions and comparing with
experiments

To combine the inner and outer solutions, we use equation (4.10) connecting the macroscopic
angleα of the string model to the microscopic Coulomb angle φ. It allows Coulomb’s static friction
criterion | tanφ|<µr to be expressed by{

|f(cosα)|<µr (stick)

|f(cosα)|= µr (slip)
(5.1)

where µr is the friction coefficient of the rope on itself. Using this equation, we can determine
the state of the honda as a function of the macroscopic angle α. In particular, the frictionless case
µr = 0 corresponds to f = 0, hence cosα= 1

2 :

α=
π

3
(frictionless case, µr = 0). (5.2)

We now use this effective, ‘macroscopic’ criterion of friction to revisit the solutions of the string
models that we derived in Section 3 under the assumption of a fixed honda. For every value of
the triple (R,Ls, Ω) we evaluate the angle α(R,Ls, Ω) made by the loop at the honda, using the
numerical solution of the string problem. Then, we define µ∗r by

µ∗r(R,Ls, Ω) = f
(
cos
(
α(R,Ls, Ω)

))
. (5.3)

By equation (5.1), the state of the solution described by the set of parameters (R,Ls, Ω) can be
predicted by comparing the true friction coefficient of the rope µr to the limit value µ∗r predicted
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Figure 8. Diagram of stability of the lasso in the (Ω,Ls) plane, forR= 0.032. The parallel black and red curves show the

isovalues of µ∗r predicted by the matched asymptotic expansions: the central thick black curve corresponds to frictionless

solutions (µ∗r = 0), and the red curves show the onset of sliding (µ∗r =±µr) at the honda for a Coulomb coefficient

µr = 0.2. Two particular configurations on these curves are shown in insets A and B. Near the red curves, the red

(unstable) and green (stable) arrows represent the lasso behavior after the onset of sliding at the honda, as discussed in

the main text. The orange region marks the linearly unstable domain based on the stability analysis of Appendix B. Green

dots correspond to two experimental datasets (R= 12.7 cm, L= 396 cm, corresponding to the same R= 0.032),

obtained with a cotton lasso for slowly increasing and decreasing angular frequencies; the arrows indicate the order in

which these points were measured.

by the theory: {
|µ∗r(R,Ls, Ω)|<µr (stick)

|µ∗r(R,Ls, Ω)|= µr (slip)
(5.4)

In other words, |µ∗r | is the minimum value of the friction coefficient µr required for the honda to
be blocked.

The isoclines of µ∗r are plotted as curves in the (Ω,Ls) plane in Figure 8, for a fixed value of the
offsetR= 0.032 matching that from our experiments. In the parameter space reported in Figure 8,
which corresponds to the imperfect case (R 6= 0), we were always able to find Flat loop solutions.
In view of equation (5.4), the steady solutions that can be observed for a given value µr of the rope
friction coefficient are those enclosed by the curves µ∗r =−µr and µ∗r =+µr in the diagram (thick
red curve in Figure 8). The central dotted curve is the locus of equilibrium solutions that can hold
without any friction (α= π/3, µ∗r = 0). Above the upper curve µ∗r =−µr the honda starts to slide
in the direction that makes the loop shrink: f < 0 implies α< π/3, as for the configuration A in
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Figure 8, and Ls increases, as indicated by the vertical arrows. Conversely, below the lower curve
µ∗r =+µr , the honda slides in the direction that makes the loop grow: f > 0 implies α> π/3, as
in the configuration B in Figure 8, and Ls decreases, as indicated by the vertical arrows. In the
experiment, the angular velocity Ω is controlled. Except in a very small region of the boundary
(green vertical arrow, nearΩ = 7.5), the sliding motion sketched by the red vertical arrows pushes
the system even further from the region of frictional blockage: therefore, we expect that the system
becomes unstable whenever the honda starts to slip.

Superimposed on the diagram are the results of the stability analysis carried out in
Appendix B. The orange area denotes unstable configurations. Everywhere outside this orange
area Figure 8, there exist stable Flat Loop solutions. The stability analysis assumed that the honda
cannot slide. This assumption is justified when the coefficient of static friction is non-zero: as
long as the base solution lies in the interior of the region of frictional blockage (|µ∗r |<µr), no
infinitesimal perturbation can violate Coulomb’s static friction criterion, and the stability analysis
must indeed assume that the honda remains in the blocked state.

To summarize, the analysis predicts that steadily rotating solutions can be observed in the
white central band in the diagram bounded by the two red curves µ∗r =±µr (where the honda is
in the blocked state), excluding the orange tongues (where a dynamical instability is expected to
take place).

To compare this phase diagram to experiments done using a real lasso, we started by
measuring the value of the friction coefficient µr of a cotton lasso rope on itself. We used a
simple ‘cable car’ experiment set up as follows. A weight was suspended to a short piece of rope
terminated by a honda which could slide onto another piece of rope clamped at its endpoints and
subjected to tension. The tension was large enough that it stays almost straight in the presence of
the weight. We varied the slope of the second rope with respect to the horizontal, and measured
the slope angle at the onset of sliding. The arc-tangent of this angle yields the value of µr , which
we found to be µr ≈ 0.2 for our rope.

Next, we produced experimental datapoints in the phase diagram in Figure 8 as follows. We
used the same cotton lasso as in the calibration experiments (µr = 0.2). Its honda is a standard
slipknot and can slide with friction. The lasso was fixed onto our ’robo-cowboy’ (R= 12.7 cm and
L= 396 cm). Once the lasso has been attached to the mechanical hand, the motor was turned on
at an initial angular frequency, and the operator intervened by hand to guide the rotating system
into a Flat Loop configuration. The frequency was then gradually decreased from Ω1 = 7.54 to
Ω2 = 6.74 and increased from Ω3 = 8.33 to Ω4 = 9.53. The spoke length Ls was measured on
steadily rotating configurations for a series of values of Ω. The initial values Ls(Ω1) and Ls(Ω3)

depend on the way the operator initiates the Flat Loop , hence the gap between the two sets of
data. The experimental datapoints all fall inside the white region of the diagram: the experiments
are fully consistent with the analysis. The dataset corresponding to increasing Ω is distributed
along a horizontal line in the diagram: Ls remains constant, consistent with the fact that neither
slip at the honda nor a dynamical instability are predicted by the theory. At the maximum value
of Ω reported in the diagram, the lasso started to collide with the walls of the experimental room
(for larger Ω its shape is both flatter and wider), and we stopped the experiments. For the other
dataset, corresponding to decreasing Ω, Ls first remains constant. Then, for a reason which is
unclear 1, Ls starts to increase quasi-statically, corresponding to a progressive shrinkage of the
loop. At some even lower angular frequency Ω corresponding to the last datapoint (close to A
in the diagram), we found that the loop collapses suddenly. This collapse occurs exactly when
the system encounters the boundary µ∗r = µr , where the theory indeed predicts an instability
(unstable stick to slip transition, as indicated by the red vertical arrow in the diagram).

1The points in the dataset are parallel to the boundary of the unstable region (orange in the diagram), but with some offset.
One possible explanation for the variations of Ls upon decreasing Ω is that the dynamical instability takes place slightly
earlier than predicted by the theory, and causes slip at the honda, in such a way that the system moves spontaneously along
the edge of the unstable region.
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6. Discussion and conclusions
The phase diagram of Fig. 8 enables us to draw some practical conclusions about trick roping.

First, the typical angular velocities one can produce with one’s arm (. 120 rpm, or Ω . 7.9)
have a good overlap with the range of angular frequencies where steadily rotating solutions exist,
confirming what we already know from experience: that the Flat Loop trick is indeed possible. But
the diagram also predicts that a minimal angular frequency ofΩ ∼ 5.5 (corresponding to 1.4 turns
per second, or 84 rpm) is required to produce flat loops. A key to success is therefore to pick a
good angular velocity.

Second, the diagram shows that the relative size Ls of the loop to the total arc-length has to lie
in a narrow interval. Our theory does a very good job at explaining the narrow range of values
0.20.Ls . 0.30 in which we could produce Flat Loop configurations experimentally. Practically,
this means that the loop needs to comprise initially about ∼ 75% of the total rope length for the
Flat Loop trick to succeed. This was confirmed by Jesus Garcilazo (personal communication) and
by the experiment in Fig 2a, for which Ls = 0.74L. Beginners often tend to form smaller loops
(larger Ls) but such configurations are unstable as the honda slides and the loop shrinks to a
point.

Third, we found that Ls becomes independent of the forcing (hand) frequency when that
frequency becomes large: the lasso then only changes its shape by becoming flatter and rising
close to the level of the cowboy’s hand. This implies that changing the angular frequency is of
little help in adjusting the loop size. A corollary is that cowboys cannot adjust the size of their
lasso by slowly (quasi-statically) changing the forcing parameters. We speculate that a sudden
change of the forcing parameters (radius or frequency) may be necessary for this purpose.

An unexpected conclusion of our study is that the Flat Loop trick has mirror symmetry across
a vertical plane passing through the rotation axis and the hand. This counterintuitive conclusion
implies that the hand does not ‘lead’ the honda, but rather remains perfectly in phase with it.
By contrast, Bunks [10] asserts that the hand leads the honda by 90◦, and our collaborator Jesus
Garcilazo affirmed to us that it ‘feels like’ the hand is leading. However, numerical modeling
and the rapid-camera observations provided in the supplementary material support the opposed
conclusion of perfect mirror symmetry.

This first venture into the mechanics of the lasso focused on the Flat Loop trick, which is the
simplest shape and the only one that is stationary in a co-rotating reference frame. In future we
plan to extend the present analysis to non-stationary situations, a category that includes the most
spectacular tricks in the roper’s toolkit. An interesting question for future work is to understand
how ropers control their lassos based on visual and/or tactile input, a feedback that may have a
strongly stabilizing effect.
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Figure 9. Bifurcation analysis of a lasso with a non-sliding honda (µr =∞), with the upper endpoint lying on the

axis (R= 0). Flat Loops are obtained from the unbuckled (straight, vertical) configuration s0 by a succession of two

bifurcations. (a) Bifurcation analysis of the unbuckled configuration s0 showing a competition of the whirling instability (s1:

loop stays closed, string becomes curved) and ‘coat-hanger’ instability (s2: loop opens up, spoke remains straight) : the

critical rotation frequencies are plotted as a function of the spoke length Ls. The coat-hanger mode occurs first when

L>L
∗
s = .167 (b) Bifurcation diagram as a function of the rotation frequency Ω, for Ls = .29, showing the branches

corresponding to the trivial solution (s0), the whirling modes (s1), the hanger mode (s2) and the Flat Loop mode (s3). The

unbuckled solution first becomes unstable to a hanger mode (planar solution with open loop, s2); at a higher frequency,

the hanger mode loses planar symmetry and goes to a lasso shape, s3, by a secondary bifurcation.

A. Appendix: bifurcation diagram for whirling solutions,
coat-hangers and flat loops

We consider the string model for the lasso in equations (3.1–3.2) with a non-sliding honda (µr =
∞), and report the existence of four types of solution in the case Ls = 0.29 and R= 0, i.e. when
the upper end of the lasso coincides with the axis of rotation (Figure 9).

The first type of solution, denoted by ‘s0’, is when the lasso is hanging along the axis ez and
its loop is closed. We will refer to this as the trivial branch of solutions.

The second family of solutions, denoted by ‘s1’, are whirling solutions: the loop is closed but
the string deviates from the axis of rotation. Mathematically, these solutions are classical whirling
modes [4–6] of an inhomogeneous string having a mass per unit length λ in its upper part (in the
spoke, above the honda) and 2λ in its lower part (in the loop, made up of two braids in contact).
The length of this whirling string is Ls + 1

2 (L− Ls).
The third type of solutions are ‘coat-hanger’ solutions, denoted by ‘s2’. A solution of this type

is planar and stays invariant by a planar reflection with respect to the axis of rotation. Their plane
rotates with an angular velocity Ω, and the loop is opened up by centrifugal forces.

Finally, the Flat Loop solutions, denoted by ‘s3’ are non-planar solutions: the spoke lies in a
plane that in an axis of symmetry of the loop. Solutions without this symmetry appear not to
exist. These Flat Loop solutions have been extensively discussed in the main text.

Using numerical continuation, we studied the possible bifurcations from the trivial state ‘s0’.
We found a competition between two possible bifurcations, one leading to whirling modes and
the other one to coat-hanger solutions. The corresponding bifurcation thresholds are plotted in
Figure 9a as a function of the dimensionless spoke length Ls. For Ls less than a critical value
L∗s = .167, the whirling mode appears first; for Ls >L

∗
s , the coat-hanger mode appears first.

In Figure 9b, we show the bifurcation diagram for a fixed value of Ls = 0.29 (and R= 0 as
everywhere in this appendix). The angular velocity Ω is used as a control parameter. To identify
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the configurations, we used two order parameters,

xm =
1

L
max

s∈[Ls,L]
x(s), ym =

1

L
max

s∈[Ls,L]
y(s), (A.1)

where the axes are oriented in such a way that the plane (Oxz) contains the spoke, and is the
plane of symmetry of the loop. The trivial branch ‘s0’ corresponds to xm = ym = 0, the whirling
solutions ‘s1’ to xm 6= 0 and ym = 0, the coat-hanger solutions ‘s2’ to xm = 0 and ym 6= 0, and the
Flat Loop solutions to both xm 6= 0 and ym 6= 0.

For the particular value of Ls shown in Figure 9a, the Flat Loop state ‘s3’ is obtained by a
bifurcation from the coat-hanger branch ‘s2’, not from the whirling modes ‘s1’. The same holds for
any value ofLs. Doing the experiments by hand, we indeed found that it was virtually impossible
to open the loop once trapped in a whirling state.

Based on this diagram, the Flat Loop solutions can be understood as resulting from a series of
two bifurcations: one that opens up the loop and the other one that bends the spoke away from
the axis of rotation. Flat Loops are a hybrid of coat-hangers and whirling solutions. Note that in
the case where R 6= 0 the evoked bifurcations are then imperfect.

B. Appendix: Linear stability analysis of the string model
We begin with the equations of motion for the lasso based on the string model, with a non-sliding
honda. These equations are then linearized to analyze the stability of steadily rotating solutions
in the dynamical sense.

The base solution is of the type described in §3 — see Figure 4 in particular — and is stationary
in the co-rotating frame. Let us denote by a subscript 0 this base solution, (x0(s),n0(s)), and
the set of associated dimensionless parameters (R0, Ls0, Ω0). Because the base state and the
equations of motion are time-invariant, we introduce time-dependent perturbations of the form
x1(s, t) =x1(s) e

σ t and n1(s, t) =n1(s) e
σ t, where the dimensionless growth rate σ is a complex

number.
We restore the complete acceleration term in equation (3.1a), insert the expansions x=x0 + x1

and n=n0 + n1 and linearize to obtain

n′1 = σ2 x1 + 2σ Ω0 ez × x1 +Ω0 ez × (Ω0 ez × x1). (B.1a)

The three terms in (B.1a) represent the acceleration seen within the co-rotating frame, the
Coriolis acceleration, and the centrifugal acceleration, respectively. Note that none of the control
parameters (R0, Ls0, Ω0) is perturbed.

Rewriting the constitutive law (3.1b) and the inextensibility condition (3.1c) as x′ =n/|n|, we
find upon linearization

x′1 =
n

|n| −
n0

|n0|
=

n1

|n0|
− n0

|n0|
n0 · n1

n2
0

, (B.1b)

where the right-hand side is the projection of n1 in the direction perpendicular to n0.
The set of equations (B.1) applies to both the linearized spoke (S) and loop (L) domains. The

relevant boundary and continuity conditions are derived from equation (3.2) and are:

x1(0) = 0, (B.2a)

x1(L
+
s )− x1(L

−
s ) = 0, (B.2b)

x1(1)− x1(L
+
s ) = 0. (B.2c)

where L
−
s and L

+
s refer to either side of the honda. The honda is massless: therefore, the balance

of forces is
− n1(L

−
s ) + n1(L

+
s ) + n1(1) = 0. (B.2d)

The boundary value problem comprising equations (B.1) along with the boundary
conditions (B.2) is integrated numerically using a shooting method. The missing initial
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data in each domain, V = (n1(0),n1(L
+
s )), are used as shooting parameters. We denote by

M(σ,R0, Ls0, Ω0) the shooting matrix, such that M(σ,R0, Ls0, Ω0) · V =R yields the residueR
for any particular value of the initial condition V . Here, the residue is defined as the left-hand sides
of equations (B.2c) and (B.2d). The matrix M is a 6× 6 matrix. As usual for the shooting method,
the columns of M are found by calculating the residues corresponding to the six particular initial
conditions such that V has only zero entries, except for one entry which is set to unity.

Integrating the linearized problem six times, we can therefore calculate the matrix M . The
complex growth rates σ are then the solutions of

M(σ,R0, Ls0, Ω0) · V = 0. (B.3)

Non-trivial solutions of equation (B.3) exist when det(M(σ,R0, Ls0, Ω0)) = 0, which is an
eigenvalue problem for σ. For a given base solution labelled by (R0, Ls0, Ω0), the set of complex
growth rates σ are found by numerical root-finding. The base solution is dynamically stable if all
roots σ have a negative real part,<σ≤ 0, and dynamically unstable otherwise. Note that there are
infinitely many eigenvalues and the denomination stable is relative to the number of eigenvalues
investigated, generally the first six. In facts, even when checking more, we have found that only
the third one was likely to become unstable.

The stability region in the diagram in Figure 8 has been obtained by meshing the region of
interest, 3.0<Ω < 9.0 and 0<Ls < 0.35. Each point in the mesh corresponds to a particular base
solution, whose stability has been assessed using the method described above.
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