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Abstract

We consider the buckle-driven delamination of compressed thin films. For a wide class of
patterns of delamination, it is shown that the loading on the delamination front progressively
goes from mode I to mode II during growth of the blister. As a result, the mode dependence
of the film/substrate interface excludes widespread delamination. This explains the obser-
vations of blisters of finite extent, which are otherwise difficult to interpret. We also study a
model of interfacial fracture with friction. It reveals that a severe mode dependence can be
induced by interfacial friction. This permits us to account for the mode dependence using only
simple ingredients: friction and linear elasticity. 2000 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Coated materials have many applications in industry: coatings permit one to obtain
wear-resistant metal-cutting tools, thermal barriers in the aircraft and automobile
industry, insulating layers in microelectronics, etc. The reliability of coated materials
has become a growing field of interest in the recent past. In this paper, we are
concerned with a particular mode of failure of these materials, the buckle-driven
delamination. Coated materials are often obtained by vapor deposition of a thin film
on a substrate at high temperature. The film and the substrate are made of different
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materials, and because of the mismatch of thermal expansion coefficients between
them, the film acquires a biaxial residual stresss0 upon cooling. When this residual
stress is compressive (s0,0) and large enough, an elastic instability may take place:
to release its compression, the film tends to lift off the substrate, fracturing the inter-
face (Nir, 1984; Argon et al., 1989). This instability results from a competition
between the elasticity of the film, and the cohesion of the interface. Complex patterns
of delamination have been observed as telephone-cord blisters (Gille and Rau, 1984).
The mechanical conditions that lead to rupture of the interface are not well under-
stood yet, although some progress has been made towards the understanding of these
patterns (Jensen, 1993; Audoly, 1999).

The ability of the interface to sustain a certain loading without fracturing is called
its toughness. This quantity has been measured in experiments for a variety of inter-
faces. The interface toughness is systematically enhanced when the loading on the
crack tip goes from mode I to mode II (Wang and Suo, 1990; Liechti and Chai,
1992): interfaces are more easily fractured when the faces are pulled apart than when
sheared. This property is called the mode dependence of the toughness (we shall
sometimes refer to it simply as the “mode dependence”). Previous theoretical studies
by Whitcomb (1986), Hutchinson et al. (1992) and Hutchinson and Suo (1991) sug-
gest that the mode dependence of the film/substrate interface is essential to account
for the patterns of delamination. In Section 2 of the present paper, we explore this
idea further by studying the patterns of delamination that are obtained when the
toughness of the interface is assumed to be mode-dependent. In particular, we show
that the existence of blisters of finite size can be accounted for. Indeed, as a blister
gets bigger, the fracture becomes more and more a mode II crack. In Section 3, we
show that the mode dependence in an interface crack can be explained using only
simple ingredients: friction and linear elasticity. We derive an effective interface
toughness when friction between the crack faces is modeled with a Coulomb law
(constant proportionality factor between shear and normal contact stresses). A strong
mode dependence obtained, due to interfacial friction.

For the sake of simplicity, we consider onlyquasi-staticpropagation of cracks.
Moreover, we neglect the effect of transverse (mode III) loading on the cracks, and
use two-dimensional (2D) elasticity. A justification for this approximation is given
at the end of Section 2. The toughness of the interface,G, is defined as the energy
that must be brought to the crack tip to fracture a unit area, and has the dimension
of a surface tension. The mode-mixity parameter,y, measures the relative importance
of mode I (opening) to mode II (shearing) at the crack tip:y=tan21(KII /KI), where
KI andKII are the stress intensity factors (Rice, 1988). The mode dependence implies
that G not only depends on the nature of the interface, but is also a function of the
applied loading, throughy. Note that this parameter is taken in the range
2180°,y,180°, as this is the phase in the (KI, KII) plane. Whenuyu$90°, the open-
ing stress intensity factor,KI, is negative and the crack tends to close. This situation,
which we shall consider in Section 3, arises when the loading presses the crack faces
against each other. The definitions ofKI, KII and y are then somewhat arbitrary,
because the standard crack analysis yields overlap of the crack faces.
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2. Stability of delamination blisters

In this section, the mode-dependent toughness of the interface crack is assumed;
we investigate what patterns of delamination can be stable in the presence of mode
dependence. If the interface has been cracked over some region but the film has not
buckled, then the film remains uniformly compressed and the crack front is unloaded:
the loading on the interfacial crack tip arises from the buckling of the film. Moreover,
the buckled configuration of the film depends on the geometry of the delamination
front. This shows that buckle-driven delamination couples two problems: the elastic
deformation of the film and the propagation of the interface crack. The buckling of
the debonded portion of the film is governed by the Fo¨ppl–von Kármán equations
for elastic plates. The propagation of the interface crack is approached using the
concept of energy release rate. This quantity,G, is defined on the crack front using
the Rice integral (Rice, 1968a,b) along a vanishingly small transverse contour. Like
the toughness of the interface,G, the energy release rate,G, has the dimension of
a surface tension. It measures the intensity of loading, as it is the energy available
at the crack tip to break interfacial bonds per unit area of advance of the crack. A
standard propagation criterion for the crack isG$G(y) (becoming an equality for
quasi-static propagation). The quantitiesG andy shall be determined by solving the
equations of elasticity for the film and substrate. The dependence ofG ony expresses
the mode dependence of the interface toughness:G increases for largeuyu. The
geometry of a blister is presented in Fig. 1. We callE, h andn the Young’s modulus,

Fig. 1. Geometry of a generic 2D blister. The insert above shows a vertical section around the crack
front. A discontinuity of normal stress in the film,S, is induced by the buckling.
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thickness and Poisson’s ratio of the film, respectively;b is the characteristic size of
the blister.

2.1. Known results for one-dimensional (1D) blisters

One-dimensional patterns of delamination, i.e., circular or straight-sided blisters,
have been studied previously. To prepare the study of more general patterns in Sec-
tion 2.2, we first recall how 1D blisters are approached and how their stability is
explained (see Evans and Hutchinson, 1984; Hutchinson et al., 1992 for the circular
blister, and Chai et al., 1981; Gille and Rau, 1984 for the straight-sided one). The
Föppl–van Kármán equations for the straight-sided blister (also called the Euler
column) can be solved exactly. Those for the circular blister can be reduced to ordi-
nary differential equations, and a weakly non-linear analysis can be carried out ana-
lytically. In both cases, the critical stress with clamped boundary conditions,sc,
predicted by the classical buckling theory reads:

sc5
kgE
1−n2Sh

bD2

, (1)

whereb is half the width andkg=p2/12 for the straight-sided blister; orb is the radius
and kg=1.223 for the circular blister (Timoshenko and Gere, 1961). All quantities
that depend on the geometry of the blister are labeled by a superscript “g”. Using
sc, it is convenient to define a dimensionless buckling parameter,h, as:

h5
−s0

sc
215

1−n2

kg S−s0

E DSb
hD2

21. (2)

The buckling instability takes place when the residual stress in the film is sufficiently
compressive:h.0, i.e.s0,2sc.

Knowing the buckled configuration of the film, one can calculate two quantities
of particular interest,M and S; these two quantities determine the loading on the
crack tip and therefore govern the growth of the blister.M is the moment per unit
length transmitted across the edge of the blister, andS is the normal stresschange
across this edge (S=snn2s0, wheresnn is the in-plane stress on the inner boundary
of the blister, perpendicular to the boundary) — see Fig. 1. In 1D blisters, these
quantities take the form:

M5cg
1(n)

Eh4

b2 h
1/2, S5cg

2(n)
Eh2

b2 h, (3)

wherec1,2 are positivepure numbersof order unity, which depend on the Poisson’s
coefficient of the film,n, and on the geometry of blister, as indicated by the
superscript “g”.

The profile of the blister determines how the film is pulling on the interface crack.
Suo and Hutchinson (1990) indeed give the crack-tip loading (the energy release
rate,G, and the mode-mixity parameter,y) in terms of the so-called edge loads,S
and M:
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and

y= −90°+w(E/Es, n, ns)−tan−11 Sh2

MÎ122
= −90°+w(E/Es, n, ns)−tan−1[cg

3(n)h1/2],

(4b)

wherew is an angle in the range 50°,w,65° depending on the elastic constants of
the film and substrate,Es is the Young’s modulus andns the Poisson’s ratio of the
substrate, andcg

3=cg
2/(cg

1√12). The anglew is a constant of the interface, and does
not depend on the shape or size of the blister.

The mode dependence is essential in interfacial fracture, as was seemingly first
appreciated by Whitcomb (1986) in his study of compressive failure modes in com-
posites. Indeed, let us consider the growth of a 1D blister of delamination at constant
residual stresss0. We shall not discuss the initiation of the growth, which involves
defects on the interface. As the blister grows, its sizeb increases, and so doesh by
Eq. (2). Eq. (4a) then shows thatG(b) increases withb (note that, by symmetry,G
is uniform along the crack front in one dimension). Assume that the blister reaches
an equilibrium size,beq; this size is such that the crack front is in equilibrium:
G(b)=G[y(b)]. In the absence of a mode-dependent interface toughness (dG/dy;0),
any fluctuation ofb above beq would makeG larger thanG, so that the crack is
unstable andb becomes even larger. This would indicate an instability of 1D blisters
leading to full delamination of the film, contrary to experimental observations.

By the paragraph above, the mode dependence is necessary to explain the stability
of 1D blisters. A simple argument shows that it is also sufficient. Indeed, the mode-
mixity parameter,y, becomes more and more negative as the blister grows. This is
because, in Eq. (4b),y depends on the size of the blister only through the term
2tan−1[cg

3(n)h1/2], andc1, c2 and soc3 are positive. Typically,y<240° at the buck-
ling threshold (h¿1) reaches values of ordery<290° well above the buckling
thresholdh|1 (Hutchinson et al., 1992). As mentioned above, the interface tough-
ness,G(y), is the minimum value ofG that permits steady propagation of the crack;
it is mode-dependent, and increases strongly for large absolute values of the mode-
mixity parameter,uyu. This can explain the arrest of delamination of 1D blisters at
a finite size: the blister pulls more and more strongly on the interface crack as it
spreads (G increases) but, above all, less and less efficiently (G increases due to the
mode dependence of the interface).

2.2. Extension of 2D blisters

Section 2.1 above suggests that the mode dependence is essential to explain the
stability of blisters observed in experiments. However, a strong limitation of this
argument is that only circular or straight-sided blisters have been considered. The
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question arises whether the proposed mechanism is specific to 1D geometries, or if
it can stabilize blisters of any shape. Below, we show that a much broader class of
patterns of delamination is in fact stabilized by thesamemechanism. Indeed, we
consider all blisters that have a single typical length scale. More accurately, ifb is
the typical extent of the blister, we assume that the curvature of its boundary is
nowhere much larger than 1/b. This class contains in particular circular and straight-
sided blisters but also, more interestingly, a wide number of 2D, eventually non-
convex, patterns. Telephone-cord blisters are however excluded, because their length
is much larger than their width.

The study of 2D blisters (i.e., blisters that are neither circular nor straight-sided)
is made difficult by the absence of analytical solutions to the non-linear Fo¨ppl–von
Kármán equations when the boundary conditions are on an arbitrary curveC. Even
a numerical approach leads to overwhelming difficulties, owing to the presence of
strong non-linearities in these equations (Patricio and Krauth, 1997). These difficult-
ies are overcome, because we adopt a scaling law approach. To prove that the mode
dependence excludes widespread delamination of 2D blisters, we proceed in several
steps. First, we use energy arguments to show that a 2D blister always buckles by
a supercritical bifurcation (i.e., the vertical deflection in the buckled configuration
is vanishingly small just above threshold, forh¿1). This allows one to perform, in
a second step, a weakly non-linear analysis of the buckling of a blister; the depen-
dence ofy on the blister size in Eq. (4b) is extended later to generic blisters. This
permits one to establish that, for 2D as well as for 1D blisters,uyu increases during
growth of the blister; in consequence, the mode dependence induces a progressive
toughening of the interface, which can prevent full delamination of the film.

2.2.1. The Fo¨ppl–von Kármán equations
Let D be the region where the film has debonded from the substrate, andC the

boundary ofD, i.e., the edge of the blister. We consider the buckling of the film in
D. For a simple description, we take the unperturbed plane of the film horizontal
(gravity has no effect). The profile of the blister is parametrized by the vertical
displacementz(x, y) as a function of the horizontal coordinates (x, y). The tangential
components of the stress derive from the Airy potential,c(x, y): sxx=s0+c,yy,
syy=s0+c,xx andsxy=2c,xy, where the subscript comma indicates derivation. We recall
that s0 is the initial compression of the film. The elastic energy functional for the
thin film reads (Ben Amar and Pomeau, 1997):

EFvK{z, c} 5EE
D

dx dyHD
2

{( Dz)222(12n)[z, z]} 1
h

2E
(Dc12s0)2 (5)

2
h(1+n)

E
([c, c]1s0Dc1s2

0)J,

whereD=Eh3/[12(12n2)], D is the 2D Laplacian operator, and [f, f]=f,xxf,yy2f 2
,xy. Mini-

mization of this energy with respect to functionsz and c yields the equilibrium
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equations for the film, the Fo¨ppl–von Kármán equations (Landau and Lifschitz,
1986b):

D2c1EH∂2z
∂x2

∂2z
∂y22S ∂2z

∂x∂yD2J50 (6a)

and

DD2z2hs0Dz2hS∂2c
∂y2

∂2z
∂x21

∂2c
∂x2

∂2z
∂y222

∂2c
∂x∂y

∂2z
∂x∂yD50. (6b)

Because the substrate is infinitely thick, the film may be considered as clamped
along its edgeC. In order to enforce the corresponding boundary conditions, the
horizontal components of the displacement, (ux, uy), are needed. They have been
eliminated in the Fo¨ppl–von Kármán equations, but can be recovered from the fol-
lowing relations (Landau and Lifschitz, 1986b), which are compatible by Eq. (6b):

∂ux

∂x
5

1
ES∂2c

∂y22n
∂2c
∂x2D2

1
2S∂z

∂xD2

, (7a)

∂uy

∂y
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and

∂ux

∂y
1

∂uy

∂x
5

−2(1+n)
E

∂2c
∂x∂y

2
∂z
∂x

∂z
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. (7c)

2.2.2. The buckling is supercritical
We shall now prove the following intermediate result: if there exists a buckled

configuration (zb, cb) of the film, solution of the Fo¨ppl–von Kármán equations in
the domainD, then anyunbuckledequilibrium configuration (zu;0,cu) is unstable
with respect to this buckled configuration. As a result, the situation depicted on the
left of Fig. 2 is not possible, and the initial buckling of the film is necessarily a

Fig. 2. The initial buckling of a 2D blister is always supercritical: metastability of the unbuckled con-
figuration in the presence of a buckled equilibrium configuration (left) would be incompatible with the
actual form of the Fo¨ppl–van Kármán energy (right).
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supercritical bifurcation. This will permit scaling laws to be derived for the edges
loads,M and S, later in Section 2.2.3.

To prove the intermediate result, we assume that a buckled equilibrium configur-
ation (zb, cb) exists; then, we introduce a one-parameter family of configurations for
the film, (zn, cn), indexed by a parametern:

zv5vzb, cv5(12v2)cu1v2cb. (8)

One recovers the unbuckled configuration (0,cu) for n=0, the buckled configuration
(zb, cb) for n=1, and the mirrored one (2zb, cb) for n=21. Because of the horizontal
mirror symmetryS:(z, c)°(2z, c) in the Föppl–von Kármán equations,n=21 is an
equilibrium state of the film, as well asn=0, 1 by assumption. For other values of
n, the film is not in equilibrium, and Eqs. (6a) and (6b) donot hold.

An important point is thatall configurations indexed byn satisfy the clamped
boundary conditions, provided the two original states (0,cu) and (zb, cb) do. Indeed,
these boundary conditions read, along the edge of the blister,C: ux=uy=0 (no horizon-
tal displacement) andz=z,n=0, where the subscript “n” stands for a normal derivative.
The horizontal components of the displacement are solutions of Eqs. (7) which, by
definition (8), only depend onn through terms proportional ton2. Therefore, they
necessarily take the form:unx=uu

x+n2(ub
x2uu

x), and a similar formula foruny. Since, by
assumption, the clamped boundary conditions are satisfied forn=0, 1, one has
uu

x=(ub
x2uu

x)=0, henceunx=0 along the edgeC, for all n. The same holds foruny, and
the first set of boundary conditions is satisfied for any configuration in the family
indexed byn. Finally, by using similar arguments,zn=(nzb)=0 andzn,n=n(zb),n=0 on
the edge of the blister, and the second set of boundary conditions is also satisfied
for any n.

All configurations (zn, cn) therefore correspond to thesameblister with a fixed
boundaryC, and it makes sense to plot the elastic energy of the film as a function
of n. The constraints on this plot are: (1) it must be symmetric under the mirror
symmetryS:n°(2n); (2) the energy is stationary forn=21, 0, 1; and (3) finally,
combination of Eqs. (5) and (8) shows that this energy is a polynomial inn of degree
four. In order to feature two symmetric stable equilibrium states atn=±1, plus a
metastable one atn=0, the energy would need to be at polynomial of degree at least
six in n (see left part of Fig. 2). This shows, by contradiction, that any unbuckled
equilibrium state of the film,n=0, is unstable above the buckling threshold (Fig. 2,
right), and not metastable. Therefore, we proved that the buckling of the film is
always supercritical.

That the buckling bifurcation is supercritical implies that the critical compression
s0 can he determined by studying the linear stability of the unbuckled configuration.
Let z[1], c[1], u[1]

x and u[1]
y represent an infinitesimal change in the configuration of

the film near the unbuckled state. Linearization of Eqs. (6) yields the equation for
a marginal mode:

Eh3

12(1−n2)
D2z[1]2hs0Dz[1]50 onD, (9)

with the boundary conditionsz[1]=z[1]
,n =0 along C. The Airy potential and the in-
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plane displacements vanish for a marginal mode, as the linearization of Eqs. (6) and
(7) yieldsc[1]=0 andu[1]

x =u[1]
y =0. That the marginal mode involves only vertical dis-

placements will be explained below by symmetry arguments.
Dimensional analysis of Eq. (9) for the marginal mode again leads to Eq. (1) for

the critical stresssc. Therefore, the critical stress for buckling in the regionD is
comparable to that for buckling in a circular region of comparable extent,b. Now,
kg is a coefficient depending only on the blister geometry [and not onb, which
appears independently in Eq. (1)]. This geometrical coefficientkg could be calculated
for any particular blister geometry by solving Eq. (9), but this is unnecessary: since
we consider blisters having asingle typical length scale,kg has to be of order unity.
This is all we shall need to know aboutkg for the rest of the analysis. Incidentally,
this paragraph proves that, for the class of blisters studied here, the dimensionless
buckling parameter,h, is still given by Eq. (2).

2.2.3. Weakly non-linear analysis above the buckling threshold
If the buckling were subcritical (as in Fig. 2, left), the only way to approach the

buckled state would be by solving exactly the Fo¨ppl–von Kármán equations. Luckily,
we have been able to prove that the buckling bifurcation is supercritical (Fig. 2,
right), and a weakly non-linear analysis of the buckling can be performed. This
approximate approach is considerably simpler than the exact solution of the Fo¨ppl–
von Kármán equations; other plate buckling problems suggest that this method gives
accurate results, including well above the threshold, although it is valid in full rigor
for h¿1 only. In fact, it is not even necessary to carry out the weakly non-linear
analysis in full details (which is anyway still intractable for an arbitrary blister): a
symmetry argument straightforwardly yields the weakly non-linear behavior of a 2D
blister. Indeed, as noted above. the Fo¨ppl–von Kármán equations are invariant under
the horizontal mirror symmetry,S. Under this symmetry, the moment,M, and the
in-plane stress release caused by buckling,S, change according toM→2M and
S→+S. As usual for supercritical bifurcations (Landau and Lifschitz, 1986a), the
invariance of the Fo¨ppl–von Kármán equations under the symmetryS imposes a
scaling law for the quantities in the buckled state:M~h1/2 andS~h above the buck-
ling threshold. The reversal of the sign ofM uponS indeed corresponds to an inde-
terminacy in the sign ofh1/2 when the square root is extracted.

Given thath is the only dimensionless parameter of the problem that depends
upon the size of the blister,b, the full expression for the edge loads follows from
dimensional analysis:

M5cg
1(n, s/b)

Eh4

b2 h
1/2, S5cg

2(n, s/b)
Eh2

b2 h. (10)

Unknown numerical functions,cg
1,2, had to be introduced; we shall see that their

precise calculation, which goes beyond the present dimensional analysis, is not
required. These functions may not depend onh, which has already been factored
out. They depend on the blister shape, hence the superscript “g”, and may vary along
the edge of the blister:s is the curvilinear coordinate along the delamination front,
ands/b is the dilatation-invariant coordinate. By definition of the typical size of the
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blister b, s/b is of order unity. As a result, the values taken by these functionscg
1,2

have to be of order unity as well. As for 1D blisters, the loading at the crack tip,
(G, y), can be derived from the edge loads in Eq. (10) (Suo and Hutchinson, 1990):

G(r)5
6(1−n2)Eh5

b4 ([cg
1(s/b, n)]2h1 1

12[c
g
2(s/b, n)]2h2) (11a)

and

y(r)5290°1w(E/Es, n, ns)2tan−1[cg
3(s/b, n)h1/2], (11b)

where, as before,cg
3=cg

2/(cg
1√12) ands/b=O(1). All functions ci take positive values:

in Eq. (10), the buckling is upwards, hencecg
2.0. Since buckling permits arelease

of the initial compressive stress,s0,0, one must havecg
1.0, as in the 1D case.

2.2.4. Stabilization of 2D patterns
Eqs. (11) show that the dependence of the crack tip loading onh in Eqs. (4) could

be extended to the 2D case. The only difference is in the coefficientsci, which now
vary along the edge of the blister. Although the functionsci are unknown, it must
be pointed out that the dependence on the blister size,b, and on the initial com-
pression,s0, is fully captured in the two equations above, throughh. This remark
makes determination of theci values unimportant to our problem. Indeed, during
self-similar growth of a blister at constant residual stress, the dimensionless buckling
parameterh increases by Eq. (2), while other quantities remain constant. In conse-
quence, the energy release rate,G, increases uniformly along the delamination front.
In the absence of mode-dependent toughness, this would make all blisters unstable
against full delamination of the film, as in one dimension. However, the mode-mixity
parameter,y, takes more and more negative values ash becomes larger, because
c3.0 in Eq. (11b). Therefore, the interface toughness increases uniformly along the
edge of the blister as it spreads. This results in an effective toughening of the inter-
face, which can prevent widespread delamination of the film: on the basis of the
similarity of Eqs. (4b) and (11b), the mechanism proposed for 1D blisters can be
extended word by word to 2D patterns.

Finally, we shortly discuss a few points. First, we have only considered blisters
having a single typical length scale,b. We also have considered self-similar growth,
and not growth in only one direction at constant width. For these reasons, elongated
blisters, such as telephone cords, are excluded from the present analysis. The need
to exclude elongated blisters may not be simply a weakness of the present theory.
It may indicate that the mode dependence of the interfacecannotprevent large-scale
delamination in just one direction. As a matter of fact, telephone-cord blisters have
been observed in a variety experimental conditions (Gioia and Ortiz, 1997). Second,
we have neglected mode III (transverse) loading on the crack tip, which is in general
present for non-axisymmetric 2D blisters. It is possible to extend the present analysis
to determine the weakly non-linear mode III loads on the crack. In the absence of
experimental toughness data with transversal loading, however, this would be use-
less. Presumably, the enhancement of the interface toughness, which is reckoned to
be a consequence of progressive crack closure (see next section), should not be too
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sensitive to transverse loading. Third, we must emphasize that the mode dependence
of the interface toughness does not systematicallypreventcomplete delamination of
the film (in particular, if the initial compression of the film is too high) butdiscour-
ages it, allowing blisters of finite size to be stable under certain mechanical con-
ditions.

3. Friction-induced mode dependence in brittle materials

In this section, we study a mechanism responsible for the mode dependence of the
interface toughness. Several dissipative processes (Evans et al., 1990), like interfacial
friction (Evans and Hutchinson, 1989; Stringfellow and Freund, 1993), plasticity
(Swadener and Liechti, 1998; Shih and Asaro, 1991) and viscoelastic dissipation
(Chai, 1990), are potential sources of mode dependence. We focus on the role of
friction; to remove the other sources of mode dependence, we consider a brittle
interface made of materials following linear elasticity, except of course in avery
small non-linear region near the tip where the stress formally diverges. When the
loading on the interface crack is such that the crack faces contact (KI#0, i.e.,
uyu.90°), the interaction of the crack lips causes dissipation. This certainly results
in an increased toughness of the interface. This effect is, by nature, highly sensitive
to the degree of closure of the crack, and is therefore mode-dependent. Two models
have been proposed to assess the effect of interfacial friction on the propagation of
the crack. Evans and Hutchinson (1989) have studied the screening of the crack tip
by asperities on the crack surface. Following Stringfellow and Freund (1993), we
instead study a model of interface fracture in which the crack faces remain planar,
as the fracture follows a planar interface (see Fig. 3). The loading is such thatKI,0,
and the crack faces fully contact. In the contact region, the interaction between the
faces is modeled by a Coulomb law of friction.

Coulomb friction in interface cracks leads to anomalous divergence of the stress,
as was found more than two decades ago by Comninou and Dundurs (1979): in Eq.
(12), the stress does not follow the usual 1/√r behavior, wherer is the distance to
the tip. This unusual divergence has widely been overlooked, perhaps because it was
believed to introduce inconsistencies in the theory of fracture (in the form of infinite

Fig. 3. An interface crack model allowing assessment of the effect of interfacial friction on the interface
toughness, as introduced by Stringfellow and Freund (1993). A small non-linear region of sized centered
on the tip is represented as a dark area.
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energy release rates); for the same reason, observable effects following from it do
not seem to have been investigated. Only recently, we were able to prove that the
anomalous law (12) does not introduce inconsistencies in the theory (Audoly, 2000):
it is perfectly safe to introduce the Coulomb friction in closed interface cracks. In
consequence, the asymptotic law (12) for the stress shouldnot be disregarded, and
the discussion of frictional effects in interface cracks has to rely on it. This is the
aim of the present section.

We present the model of interface crack introduced by Stringfellow and Freund
(1993). For the sake of convenience, we shall continue to call “film” and “substrate”
the two materials merging at the interface, although our arguments are not specific
to delamination of thin films. The geometry is as in Fig. 3: a forceF is pulling an
elastic layer of widthh partially bound to an infinitely thick substrate (HÀh); f is
the Coulomb coefficient of friction at the interface;Ef, nf, Es, ns, are the Young’s
modulus and Poisson’s ratio for the film and substrate, respectively. The mode mixity
at the crack tip is known for this particular loading geometry: from Suo and Hutchin-
son (1990) one obtainsySF<2124°. This is of course only anapparentvalue, as
the definition ofy is somewhat arbitrary when the crack lips contact.

When the film is stiffer than the substrate, the formation of a bubble near the tip
has been observed numerically, a fact that has recently been explained (Audoly,
2000). To keep the arguments as simple as possible, we shall not be concerned with
this possibility: we consider only the case when the substrate is weaker than the
film. Then, there is no bubble. Because of dissipation in the contact region. the Rice
integral (Rice, 1968a,b) isnot path-independent, and the energy release rate at the
tip, Gt, is less than the Rice integral calculated along the outer boundary of the
sample,Jld (Jld~F2 measures the intensity of external loading, hence the subscript
“ld”). This effect is referred to as “frictional screening”. We shall callT the trans-
mission coefficientT=Gt/Jld, which depends on the coefficient of interfacial friction
and on the mismatch of elastic properties between film and substrate. Linear elasticity
is used, so thatT does not depend on the magnitude ofF, as long asF remains
positive (whenF,0, the crack opens. and the problem has different boundary con-
ditions on the interface). Stringfellow and Freund have calculatedT for different
typical values of the parameters; to do this, they used a numerical scheme based on
finite elements, and they evaluated the Rice integral along a small contour around
the crack tip. A typical value of transmission coefficient (hence a typical frictional
screening) for realistic values of the parameters isTSF=0.68 for f=0.5 andEf/Es=0.25
(Stringfellow and Freund, 1993).

We note that the value ofT can be used to estimate the contribution of interfacial
friction to the mode dependence of the crack. Retaining only friction among the
various contributions, we shall indeed assume that the crack has an intrinsic tough-
nessGi: propagation of the crack occurs when the crack-tip loading reaches the criti-
cal valueGt=Gi. For a loading such that the crack is well open (y=0°), the crack
faces do not contact, and the Rice integral is contour-independent,T=1; the critical
externalloading at the onset of crack propagation is simplyJld=Gt=Gi. This quantity
is also called theeffectivetoughness:Gopen

eff =Geff(y=0°)=Gi. In contrast, the effects of
interfacial friction are maximized for the loading in Fig. 3, becauseKI,0; then, the
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onset of crack propagation is still atGt=Gi, but in terms of the external loading this
yieldsTJld=Gi, hence the effective toughness isGclosed

eff =Gi/T wheny=ySF. The relative
increase in the effective toughness for largeuyu is therefore of orderg=(Gclosed

eff 2
Gopen

eff )/Gopen
eff =T−121. Using the value ofT obtained by Stringfellow and Freund

(1993), given above, a relative increase of the interface toughness by a factor
gSF=47% is obtained when the crack closes.

An asymptotic analysis of the interfacial crack with friction has been performed
by Comninou and Dundurs (1980), and extended by Deng (1994). We have recently,
complemented it by showing that the energy release rate at the tip,Gt, in factvanishes
in the model in Fig. 3 (Audoly, 2000). Indeed, when the faces of an interface crack
contact near the tip, the components of the stress diverge near the tip according to:

sab(r, q)~r(1/2)−(d/2) where

d=
2
p
tan−1(bf),

b=
ms(kf−1)−mf(ks−1)
ms(kf+1)+mf(ks+1)

.

(12)

Herem=E/[2(1+n)] is the shear modulus of either material,k=(324n) (plane strain
is imposed by the substrate of thicknessHÀh), anda, b=x or y. Polar coordinates
(r, q) centered on the tip are used. The azimuthal dependence ofsab is not needed
here, but can be found in Comninou (1977). We shall assume some elastic mismatch,
bÞ0, between film and substrate, as these materials differ; then, the exponentd is
non-vanishing. This coefficient is moreover positive, as was generally proved by
Audoly (2000):d,0 in the above formula would correspond tob,0, i.e., film stiffer
than substrate, but the model is then inappropriate, because a bubble is formed near
the tip and Eq. (12) does not hold. The positivity ofd means that the divergence of
the stress is alwaysabnormally weaknear the crack tip, in comparison with standard
crack theory. Dimensional analysis using Eq. (12) shows that the energy release rate
calculated along a circle of vanishingly small radiusr, centered on the tip, vanishes
like Gr~rd for r→0 (d.0). In the presence of frictionand elastic mismatch, the
energy release rateGt=Gr=0 is therefore vanishing. The predictions of the asymptotic
analysis are therefore:T=0, andgAA=+`. The effective toughness is infinite when
the interface crack is closed. This shows that the energy available from external
loading is completely dissipated at the interface and no finite energy flux enters the
crack tip. In the absence of energy for breaking interfacial bonds, complete frictional
locking of the crack is predicted by this analysis (for loadings such that the crack
is closed near the tip).

Analytical and numerical results therefore seem to contradict each other. The con-
sistency is restored, using the following remark (Deng, 1994). The mismatch para-
meter is of orderubu|0.1 for most interfaces (Rice, 1988); by Eq. (12), with a coef-
ficient of friction of order unity, the anomalous exponent is of orderd|0.05. As a
result, the energy release rate,Gr~rd, decreases very slowly to zero as the tip of the
crack is approached (r→0). The value ofT calculated numerically depends on the
size of the mesh elements near the tip, although this size is small compared with all
other lengths in the problem. This probably accounts for the discrepancy between
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numerical and analytical approaches: in the limit of vanishingly small mesh elements,
the analytical result would have been recovered numerically, i.e.,T=0.

Neither the numerical nor the analytical predictions represent reality in an absolute
sense. By the paragraph above, the numerical results depend on a hidden parameter,
the mesh resolution. Using linear elasticity of continuous media, the analytical
approach predicts a complete dissipation of the external loading; however, part of
this dissipation occurs at very small scales, in a region near the tip where both the
approximations of linear and continuous medium cease to be valid. This serves as
a warning that any small (eventually microscopic) scale near the tip shall strongly
influence the value ofT, and, therefore, the importance of frictional effects. In order
to model interfacial friction consistently, a small length scale near the tip,d, must
therefore be introduced explicitly in the model. This length scale is the size of the
region where the materials do not behave like a linear elastic and continuous medium,
due to plasticity or cohesion for example.

To focus on interfacial frictional among other sources of mode dependence, we
chose to consider ideally brittle materials. Barenblatt has proposed an estimate of
the lengthd in such materials; it is the size of the region over which the stress
overcomes the atomic cohesion:KIc/√d=sm wheresm is the maximal intensity of
forces of cohesion andKIc is the critical stress intensity factor for crack propagation.
For a perfect crystal with interatomic spacinga, sm|m/10, wherem is a typical
modulus of the material (Barenblatt, 1963). Moreover, a useful estimate for the criti-
cal stress is:KIc|m√a. Combining these results, the width of the Barenblatt region
is estimated as:dbr|(100a)|1028 m in the ideally brittle case; in materials that are
not perfectly brittle, this length can be larger by several orders of magnitude.

We arrive at a situation very similar to the one studied by Barenblatt (1963) in
his famous regularization procedure. In order to remove the stress singularities from
the theory of cracks, he introduced a non-linear zone near the tip, which can be seen
as a black box. Making a balance of the energy flowing into this non-linear zone,
Barenblatt derived a simple criterion for quasi-static advance of the crack: the energy
release rate calculated around this black box of sized, Gd, must equal a fracture
energy,Gi. This fracture energy is related to the cohesive and plastic properties of
the crack. In standard crack theory,Gr converges toGtÞ0 for r→0 and the length
d is much smaller than any other length, so that Barenblatt’s approach is sometimes
seen as a refined manner to establish the Griffith’s criterion for crack propagation:
Gt$Gi. Being very small, the length scaled disappears from the standard theory of
cracks. However, in the framework of interfacial cracks with friction, Barenblatt’s
criterion doesnot reduce to Griffith’s one: because of the very slow vanishing of
Gr at the tip (d is small),Gd is very different fromGt=0, and the length scaled must
be kept. The Barenblatt criterion for crack advance,Gd$Gi, can be rewrittenJId$Geff,
when Geff is defined asGeff=Gi/T, with T=Gd/Jld. This shows that a consistent defi-
nition of the frictional screeningT should involveGd, not Gt. The very small scale
that we need to introduce in the theory is Barenblatt’s length,d.

The effect of the interfacial friction on the interface toughness of a brittle interface
can now be estimated. We shall rely on the numerical simulations performed by
Stringfellow and Freund (1993), which have already solved the “macroscopic” part
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of the problem in Fig. 3; we simply need to extend their approach so as to correctly
account for frictional effects below their numerical resolution. The same (typical)
values for the parameters are used as theirs:f=0.5, Ef/Es=0.25,nf=ns=0.3. We define
the numerical resolution,q, as the ratio of the radius of the smallest numerical con-
tour around the tip,rSF, to the thickness of the film,h: q=rSF/h. We remind that the
calculated valueTSF in fact depends onq, as it would vanish forq→0 (perfect mesh).
For the particular mesh of finite elements used by Stringfellow and Freund (1993),
q<0.06. Using definition (12), the anomaly in the stress divergence isd=0.054.
Assuming that the asymptotic lawGr~rd is satisfied in the small region of sizerSF/h,
the energy release rate is damped by a factor (dbr/rSF)d when passing from thenumeri-
cal resolution,rSF, to the physically relevant Barenblatt scale,dbr. Therefore, the
energy release rate entering in the Barenblatt criterion for crack advance is:
Gd=(d/rSF)dGSF, whereGSF is the energy release rate obtained numerically in String-
fellow and Freund (1993). The relative increase of interface toughness for brittle
materials therefore reads:

gbr5
1

Tbr

21 whereTbr5TSFSdbr

rSF
Dd5TSFSdbr

qhDd. (13)

Assuming that the above layer has a thicknessh=300µm and using the Barenblatt
estimate fordbr, we obtaingbr=121%. As noted above,g measures the contribution
of interfacial friction in the effective toughness of the crack whenKI,0: when one
arbitrary unit of energy is brought to the tip for breaking interfacial bonds, 1.21 units
are at the same time dissipated by friction; as a result, most of the toughness is due
to friction. The value ofg also permits one to characterize the mode dependence of
the interface: due to friction, its toughness is multiplied by a factor of about
Gclosed

eff /Gopen
eff =2.21 upon crack closure.

For comparison, the valuegSF=47% has been obtained when dissipation below the
numerical resolution (6% of the film thickness) is neglected (Stringfellow and
Freund, 1993). It is much less thangbr=121%. This demonstrates that dissipation at
small scales near the tip can be quite important in the fracture of interfaces; in
numerical simulations, a significant contribution to the interface toughness can be
missed if dissipation below the numerical resolution is neglected. This result is after
all quite intuitive: near the tip, the contact pressure diverges, which makes frictional
screening especially efficient.

All of the present analysis is based on the anomaly in the scaling law (12) for
the stress in a closed interface crack (dÞ0): in the presence of friction and elastic
mismatch, frictional screening does not simply result in a decrease of the stress
intensity factor at the tip; more dramatically, it changes the nature of the divergence
of the stress, making it smoother. In this section, we argued that the weakness of
the stress singularity underlies observable effects: a strong frictional dissipation at
small scales near the tip has been pointed out, which strongly enhances the effective
toughness of the interface. As a result, our estimate of the mode dependence induced
by friction is higher than when the anomalous law (12) is overlooked, and seems
more compatible with experimental plots ofG(y). Finally, we note that, by Eq. (13),
the effects of interfacial friction are stronger when the Barenblatt length is smaller,
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i.e., for more brittle materials [in plastic materials, the lengthd must be taken as
the size of the plastic region, which is often larger thandbr by several orders of
magnitude (Barenblatt, 1963)]. The effects of interfacial friction on the mode depen-
dence are stronger when that of plasticity are weaker: plasticity and interfacial fric-
tion act ascomplementarysources of mode dependence. Which one dominates in a
particular interface depends on the brittleness of the materials.

4. Conclusion

We have first considered the effect on the mode dependence on the patterns of
delamination. In the absence of exact analytical solutions to the non-linear Fo¨ppl–
von Kármán equations, an approach based on dimensional analysis turned out to be
effective: the evolution of the mode-mixity parameter along the crack front during
growth of a blister could be derived for quite generic geometries. We have found
that the delamination front is more and more a mode II crack as the blister spreads
in all directions. As a result, the mode dependence of the film/substrate interface
can prevent widespread delamination. Experimental observation of finite-sized blis-
ters, and of elongated ones, could be understood. All of these arguments generalize
results obtained previously for circular or straight-sided blisters.

In a second step, we have shown that interfacial friction can explain mode depen-
dence. Coulomb friction leads to an anomalous divergence of the stress near the tip
of a closed interface crack. As a result, the effective toughness increases severely
upon crack closure (typically by 120%; i.e., the interface becomes more than twice
tougher). A physical interpretation was given: the frictional screening of the external
load is very effective in the contact region near the tip, where the contact pressure
is high. It was emphasized that these frictional effects are sensitive to a very small
scale,d, which depends on the brittleness of the materials. Our treatment of Eq. (12)
may be applicable to other mechanical problems involving anomalous asymptotic
laws, which often appear in elasticity when non-standard boundary conditions are
considered.

Collecting the results presented in the present paper, we are led to the following
picture: when a blister spreads, the delamination front is more and more a mode II
crack. Above a critical blister size, the lips of the crack contact (KI=0), and strong
frictional effects can prevent further expansion of the blister. This picture is of course
simplified, as other sources of mode dependence arising in real materials are ignored.
This scenario is nevertheless perfectly valid in the limit of an ideally brittle interface.
Quite remarkably, it provides a picture of a complex process that is both simple (its
ingredients are linear elasticity and Coulomb friction) and consistent with experi-
ments (the existence of blisters of finite extent is explained).
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